Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Glob Chang Biol ; 28(10): 3333-3348, 2022 05.
Article in English | MEDLINE | ID: mdl-35092108

ABSTRACT

Studies on the impact of ocean acidification on marine organisms involve exposing organisms to future acidification scenarios, which has limited relevance for coastal calcifiers living in a mosaic of habitats. Identification of tipping points beyond which detrimental effects are observed is a widely generalizable proxy of acidification susceptibility at the population level. This approach is limited to a handful of studies that focus on only a few macro-physiological traits, thus overlooking the whole organism response. Here we develop a framework to analyze the broad macro-physiological and molecular responses over a wide pH range in juvenile oyster. We identify low tipping points for physiological traits at pH 7.3-6.9 that coincide with a major reshuffling in membrane lipids and transcriptome. In contrast, a drop in pH affects shell parameters above tipping points, likely impacting animal fitness. These findings were made possible by the development of an innovative methodology to synthesize and identify the main patterns of variations in large -omic data sets, fitting them to pH and identifying molecular tipping points. We propose the broad application of our framework to the assessment of effects of global change on other organisms.


Subject(s)
Carbon Dioxide , Seawater , Animals , Carbon Dioxide/chemistry , Ecosystem , Hydrogen-Ion Concentration , Seawater/chemistry , Transcriptome
2.
J Exp Biol ; 222(Pt 13)2019 06 28.
Article in English | MEDLINE | ID: mdl-31109971

ABSTRACT

The energetically costly transition from free-swimming larvae to a benthic life stage and maintenance of a calcareous structure can make calcifying marine invertebrates vulnerable to ocean acidification. The first goal of this study was to evaluate the impact of ocean acidification on calcified tube growth for two Serpulidae polychaete worms. Spirorbis sp. and Spirobranchus triqueter were collected at 11 m depth from the northwest Mediterranean Sea and maintained for 30 and 90 days at three mean pHT levels (total scale): 8.1 (ambient), 7.7 and 7.4. Moderately decreased tube elongation rates were observed in both species at pHT 7.7 while severe reductions occurred at pHT 7.4. There was visual evidence of dissolution and tubes were more fragile at lower pH but fragility was not attributed to changes in fracture toughness. Instead, it appeared to be due to the presence of larger alveoli covered in a thinner calcareous layer. The second objective of this study was to test for effects on S. triqueter offspring development. Spawning was induced, and offspring were reared in the same pH conditions that the parents experienced. Trochophore size was reduced at the lowest pH level but settlement success was similar across pH conditions. Post-settlement tube growth was most affected. At 38 days post-settlement, juvenile tubes at pHT 7.7 and 7.4 were half the size of those at pHT 8.1. The results suggest future carbonate chemistry will negatively affect the initiation and persistence of both biofouling and epiphytic polychaete tube worms.


Subject(s)
Carbonates/chemistry , Polychaeta/growth & development , Seawater/chemistry , Animals , France , Hydrogen-Ion Concentration , Larva/drug effects , Larva/growth & development , Mediterranean Sea , Polychaeta/chemistry , Polychaeta/drug effects , Species Specificity
3.
Sci Total Environ ; 930: 172571, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38663592

ABSTRACT

Arctic fjords are considered to be one of the ecosystems changing most rapidly in response to climate change. In the Svalbard archipelago, fjords are experiencing a shift in environmental conditions due to the Atlantification of Arctic waters and the retreat of sea-terminating glaciers. These environmental changes are predicted to facilitate expansion of large, brown macroalgae, into new ice-free regions. The potential resilience of macroalgal benthic communities in these fjord systems will depend on their response to combined pressures from freshening due to glacial melt, exposure to warmer waters, and increased turbidity from meltwater runoff which reduces light penetration. Current predictions, however, have a limited ability to elucidate the future impacts of multiple-drivers on macroalgal communities with respect to ecosystem function and biogeochemical cycling in Arctic fjords. To assess the impact of these combined future environmental changes on benthic productivity and resilience, we conducted a two-month mesocosm experiment exposing mixed kelp communities to three future conditions comprising increased temperature (+ 3.3 and + 5.3°C), seawater freshening by ∼ 3.0 and ∼ 5.0 units (i.e., salinity of 30 and 28, respectively), and decreased photosynthetically active radiation (PAR, - 25 and - 40 %). Exposure to these combined treatments resulted in non-significant differences in short-term productivity, and a tolerance of the photosynthetic capacity across the treatment conditions. We present the first robust estimates of mixed kelp community production in Kongsfjorden and place a median compensation irradiance of ∼12.5 mmol photons m-2 h-1 as the threshold for positive net community productivity. These results are discussed in the context of ecosystem productivity and biological tolerance of kelp communities in future Arctic fjord systems.


Subject(s)
Climate Change , Estuaries , Kelp , Arctic Regions , Ecosystem , Svalbard , Seawater
4.
Ecol Evol ; 14(10): e70183, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39355104

ABSTRACT

Fjord systems in the Norwegian Arctic are experiencing an increasing frequency and magnitude of marine heatwaves. These episodic heat stress events can have varying degrees of acute impacts on primary production and nutrient uptake of mixed kelp communities, as well as modifying the biogeochemical cycling in nearshore systems where vast areas of kelp create structural habitat. To assess the impact of future marine heatwaves on kelp communities, we conducted a 23 day mesocosm experiment exposing mixed kelp communities to warming and heatwave scenarios projected for the year 2100. Three treatments were considered: a constant warming (+1.8°C from the control), a medium magnitude and long duration heatwave event (+2.8°C from the control for 13 days), and two short-term, more intense, heatwaves(5 day long scenarios with temperature peaks at +3.9°C from the control). The results show that both marine heatwave treatments reduced net community production, whereas the constant warm temperature treatment displayed no difference from the control. The long marine heatwave scenario resulted in reduced accumulated net community production, indicating that prolonged exposure had a greater severity than two high magnitude, short-term heatwave events. We estimated an 11°C temperature threshold at which negative effects to primary production appeared present. We highlight that marine heatwaves can induce sublethal effects on kelp communities by depressing net community production. These results are placed in the context of potential physiological resilience of kelp communities and implications of reduced net community production to future Arctic fjord environmental conditions.

5.
Science ; 380(6647): 812-817, 2023 05 26.
Article in English | MEDLINE | ID: mdl-37228198

ABSTRACT

Iron is an essential nutrient that regulates productivity in ~30% of the ocean. Compared with deep (>2000 meter) hydrothermal activity at mid-ocean ridges that provide iron to the ocean's interior, shallow (<500 meter) hydrothermal fluids are likely to influence the surface's ecosystem. However, their effect is unknown. In this work, we show that fluids emitted along the Tonga volcanic arc (South Pacific) have a substantial impact on iron concentrations in the photic layer through vertical diffusion. This enrichment stimulates biological activity, resulting in an extensive patch of chlorophyll (360,000 square kilometers). Diazotroph activity is two to eight times higher and carbon export fluxes are two to three times higher in iron-enriched waters than in adjacent unfertilized waters. Such findings reveal a previously undescribed mechanism of natural iron fertilization in the ocean that fuels regional hotspot sinks for atmospheric CO2.


Subject(s)
Carbon Dioxide , Iron , Nitrogen Fixation , Phytoplankton , Seawater , Ecosystem , Iron/metabolism , Oceans and Seas , Phytoplankton/growth & development , Phytoplankton/metabolism , Seawater/chemistry , Seawater/microbiology , Carbon Cycle , Carbon Dioxide/metabolism
6.
PLoS One ; 12(2): e0171980, 2017.
Article in English | MEDLINE | ID: mdl-28212418

ABSTRACT

The evolution of organic carbon export to the deep ocean, under anthropogenic forcing such as ocean warming and acidification, needs to be investigated in order to evaluate potential positive or negative feedbacks on atmospheric CO2 concentrations, and therefore on climate. As such, modifications of aggregation processes driven by transparent exopolymer particles (TEP) formation have the potential to affect carbon export. The objectives of this study were to experimentally assess the dynamics of organic matter, after the simulation of a Saharan dust deposition event, through the measurement over one week of TEP abundance and size, and to evaluate the effects of ocean acidification on TEP formation and carbon export following a dust deposition event. Three experiments were performed in the laboratory using 300 L tanks filled with filtered seawater collected in the Mediterranean Sea, during two 'no bloom' periods (spring at the start of the stratification period and autumn at the end of this stratification period) and during the winter bloom period. For each experiment, one of the two tanks was acidified to reach pH conditions slightly below values projected for 2100 (~ 7.6-7.8). In both tanks, a dust deposition event of 10 g m-2 was simulated at the surface. Our results suggest that Saharan dust deposition triggered the abiotic formation of TEP, leading to the formation of organic-mineral aggregates. The amount of particulate organic carbon (POC) exported was proportional to the flux of lithogenic particles to the sediment traps. Depending on the season, the POC flux following artificial dust deposition ranged between 38 and 90 mg m-2 over six experimental days. Such variability is likely linked to the seasonal differences in the quality and quantity of TEP-precursors initially present in seawater. Finally, these export fluxes were not significantly different at the completion of the three experiments between the two pH conditions.


Subject(s)
Carbon Dioxide/chemistry , Dust , Organic Chemicals/chemistry , Polymers/chemistry , Antacids , Hydrogen-Ion Concentration , Mediterranean Sea , Particle Size , Pressure , Seawater/chemistry
7.
PLoS One ; 9(4): e94068, 2014.
Article in English | MEDLINE | ID: mdl-24718610

ABSTRACT

Despite the important roles of shallow-water sediments in global biogeochemical cycling, the effects of ocean acidification on sedimentary processes have received relatively little attention. As high-latitude cold waters can absorb more CO2 and usually have a lower buffering capacity than warmer waters, acidification rates in these areas are faster than those in sub-tropical regions. The present study investigates the effects of ocean acidification on sediment composition, processes and sediment-water fluxes in an Arctic coastal system. Undisturbed sediment cores, exempt of large dwelling organisms, were collected, incubated for a period of 14 days, and subject to a gradient of pCO2 covering the range of values projected for the end of the century. On five occasions during the experimental period, the sediment cores were isolated for flux measurements (oxygen, alkalinity, dissolved inorganic carbon, ammonium, nitrate, nitrite, phosphate and silicate). At the end of the experimental period, denitrification rates were measured and sediment samples were taken at several depth intervals for solid-phase analyses. Most of the parameters and processes (i.e. mineralization, denitrification) investigated showed no relationship with the overlying seawater pH, suggesting that ocean acidification will have limited impacts on the microbial activity and associated sediment-water fluxes on Arctic shelves, in the absence of active bio-irrigating organisms. Only following a pH decrease of 1 pH unit, not foreseen in the coming 300 years, significant enhancements of calcium carbonate dissolution and anammox rates were observed. Longer-term experiments on different sediment types are still required to confirm the limited impact of ocean acidification on shallow Arctic sediment processes as observed in this study.


Subject(s)
Geologic Sediments/chemistry , Hydrogen-Ion Concentration , Oceans and Seas , Seawater/analysis , Arctic Regions , Carbonates/analysis , Cold Temperature , Denitrification , Nitrates/analysis , Nitrites/analysis , Oxygen/analysis , Phosphates/analysis , Principal Component Analysis , Silicates/analysis , Svalbard
8.
PLoS One ; 8(6): e66650, 2013.
Article in English | MEDLINE | ID: mdl-23805256

ABSTRACT

Ecosystem engineers change abiotic conditions, community assembly and ecosystem functioning. Consequently, their loss may modify thresholds of ecosystem response to disturbance and undermine ecosystem stability. This study investigates how loss of the bioturbating lugworm Arenicola marina modifies the response to macroalgal detrital enrichment of sediment biogeochemical properties, microphytobenthos and macrofauna assemblages. A field manipulative experiment was done on an intertidal sandflat (Oosterschelde estuary, The Netherlands). Lugworms were deliberately excluded from 1× m sediment plots and different amounts of detrital Ulva (0, 200 or 600 g Wet Weight) were added twice. Sediment biogeochemistry changes were evaluated through benthic respiration, sediment organic carbon content and porewater inorganic carbon as well as detrital macroalgae remaining in the sediment one month after enrichment. Microalgal biomass and macrofauna composition were measured at the same time. Macroalgal carbon mineralization and transfer to the benthic consumers were also investigated during decomposition at low enrichment level (200 g WW). The interaction between lugworm exclusion and detrital enrichment did not modify sediment organic carbon or benthic respiration. Weak but significant changes were instead found for porewater inorganic carbon and microalgal biomass. Lugworm exclusion caused an increase of porewater carbon and a decrease of microalgal biomass, while detrital enrichment drove these values back to values typical of lugworm-dominated sediments. Lugworm exclusion also decreased the amount of macroalgae remaining into the sediment and accelerated detrital carbon mineralization and CO2 release to the water column. Eventually, the interaction between lugworm exclusion and detrital enrichment affected macrofauna abundance and diversity, which collapsed at high level of enrichment only when the lugworms were present. This study reveals that in nature the role of this ecosystem engineer may be variable and sometimes have no or even negative effects on stability, conversely to what it should be expected based on current research knowledge.


Subject(s)
Ecosystem , Polychaeta/metabolism , Seaweed/metabolism , Animals , Biomass , Carbon/metabolism , Geologic Sediments/chemistry , Microalgae/growth & development , Microalgae/metabolism , Seaweed/growth & development
9.
PLoS One ; 8(4): e61978, 2013.
Article in English | MEDLINE | ID: mdl-23613994

ABSTRACT

Temperate marine rocky habitats may be alternatively characterized by well vegetated macroalgal assemblages or barren grounds, as a consequence of direct and indirect human impacts (e.g. overfishing) and grazing pressure by herbivorous organisms. In future scenarios of ocean acidification, calcifying organisms are expected to be less competitive: among these two key elements of the rocky subtidal food web, coralline algae and sea urchins. In order to highlight how the effects of increased pCO2 on individual calcifying species will be exacerbated by interactions with other trophic levels, we performed an experiment simultaneously testing ocean acidification effects on primary producers (calcifying and non-calcifying algae) and their grazers (sea urchins). Artificial communities, composed by juveniles of the sea urchin Paracentrotus lividus and calcifying (Corallina elongata) and non-calcifying (Cystoseira amentacea var stricta, Dictyota dichotoma) macroalgae, were subjected to pCO2 levels of 390, 550, 750 and 1000 µatm in the laboratory. Our study highlighted a direct pCO2 effect on coralline algae and on sea urchin defense from predation (test robustness). There was no direct effect on the non-calcifying macroalgae. More interestingly, we highlighted diet-mediated effects on test robustness and on the Aristotle's lantern size. In a future scenario of ocean acidification a decrease of sea urchins' density is expected, due to lower defense from predation, as a direct consequence of pH decrease, and to a reduced availability of calcifying macroalgae, important component of urchins' diet. The effects of ocean acidification may therefore be contrasting on well vegetated macroalgal assemblages and barren grounds: in the absence of other human impacts, a decrease of biodiversity can be predicted in vegetated macroalgal assemblages, whereas a lower density of sea urchin could help the recovery of shallow subtidal rocky areas affected by overfishing from barren grounds to assemblages dominated by fleshy macroalgae.


Subject(s)
Ecosystem , Animals , Biodiversity , Sea Urchins/physiology
10.
PLoS One ; 6(8): e23010, 2011.
Article in English | MEDLINE | ID: mdl-21860666

ABSTRACT

Ocean acidification, due to anthropogenic CO2 absorption by the ocean, may have profound impacts on marine biota. Calcareous organisms are expected to be particularly sensitive due to the decreasing availability of carbonate ions driven by decreasing pH levels. Recently, some studies focused on the early life stages of mollusks that are supposedly more sensitive to environmental disturbances than adult stages. Although these studies have shown decreased growth rates and increased proportions of abnormal development under low pH conditions, they did not allow attribution to pH induced changes in physiology or changes due to a decrease in aragonite saturation state. This study aims to assess the impact of several carbonate-system perturbations on the growth of Pacific oyster (Crassostrea gigas) larvae during the first 3 days of development (until shelled D-veliger larvae). Seawater with five different chemistries was obtained by separately manipulating pH, total alkalinity and aragonite saturation state (calcium addition). Results showed that the developmental success and growth rates were not directly affected by changes in pH or aragonite saturation state but were highly correlated with the availability of carbonate ions. In contrast to previous studies, both developmental success into viable D-shaped larvae and growth rates were not significantly altered as long as carbonate ion concentrations were above aragonite saturation levels, but they strongly decreased below saturation levels. These results suggest that the mechanisms used by these organisms to regulate calcification rates are not efficient enough to compensate for the low availability of carbonate ions under corrosive conditions.


Subject(s)
Carbonates/chemistry , Carbonates/pharmacology , Crassostrea/drug effects , Crassostrea/embryology , Animals , Calcium Carbonate/chemistry , Calcium Carbonate/pharmacology , Hydrogen-Ion Concentration , Larva/drug effects , Larva/growth & development , Seawater/chemistry , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL