Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Br Dent J ; 222(6): 478-483, 2017 Mar 24.
Article in English | MEDLINE | ID: mdl-28336976

ABSTRACT

It is ten years since the first paper on the Hall Technique was published in the British Dental Journal and almost 20 years since the technique first came to notice. Dr Norna Hall a (now retired) general dental practitioner from the north of Scotland had, for many years, been managing carious primary molar teeth by cementing preformed metal crowns over them, with no local anaesthesia, tooth preparation or carious tissue removal. This first report, a retrospective analysis of Dr Hall's treatments, caused controversy. How could simply sealing a carious lesion, with all the associated bacteria and decayed tissues, possibly be clinically successful? Since then, growing understanding that caries is essentially a biofilm driven disease rather than an infectious disease, explains why the Hall Technique, and other 'sealing in' carious lesion techniques, are successful. The intervening ten years has seen robust evidence from several randomised control trials that are either completed or underway. These have found the Hall Technique superior to comparator treatments, with success rates (no pain or infection) of 99% (UK study) and 100% (Germany) at one year, 98% and 93% over two years (UK and Germany) and 97% over five years (UK). The Hall Technique is now regarded as one of several biological management options for carious lesions in primary molars. This paper covers commonly asked questions about the Hall Technique and speculates on what lies ahead.


Subject(s)
Dental Caries/therapy , Dental Restoration, Permanent/methods , Humans , Molar , Time Factors , Tooth, Deciduous
2.
AJNR Am J Neuroradiol ; 36(8): 1472-8, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25977481

ABSTRACT

BACKGROUND AND PURPOSE: Diffusional kurtosis imaging is an MR imaging technique that provides microstructural information in biologic systems. Its application in clinical studies, however, is hampered by long acquisition and postprocessing times. We evaluated a new and fast (2 minutes 46 seconds) diffusional kurtosis imaging method with regard to glioma grading, compared it with conventional diffusional kurtosis imaging, and compared the diagnostic accuracy of fast mean kurtosis (MK') to that of the widely used mean diffusivity. MATERIALS AND METHODS: MK' and mean diffusivity were measured in the contrast-enhancing tumor core, the perifocal hyperintensity (indicated on T2 FLAIR images), and the contralateral normal-appearing white and gray matter of 34 patients (22 with high-grade and 12 with low-grade gliomas). MK' and mean diffusivity in the different tumor grades were compared by using a Wilcoxon rank sum test. Receiver operating characteristic curves and the areas under the curve were calculated to determine the diagnostic accuracy of MK' and mean diffusivity. RESULTS: MK' in the tumor core, but not mean diffusivity, differentiated high-grade from low-grade gliomas, and MK' differentiated glioblastomas from the remaining gliomas with high accuracy (area under the curveMK' = 0.842; PMK' < .001). MK' and mean diffusivity identified glioblastomas in the group of high-grade gliomas with similar significance and accuracy (area under the curveMK' = 0.886; area under the curvemean diffusivity = 0.876; PMK' = .003; Pmean diffusivity = .004). The mean MK' in all tissue types was comparable to that obtained by conventional diffusional kurtosis imaging. CONCLUSIONS: The diffusional kurtosis imaging approach used here is considerably faster than conventional diffusional kurtosis imaging methods but yields comparable results. It can be accommodated in clinical protocols and enables exploration of the role of MK' as a biomarker in determining glioma subtypes or response evaluation.


Subject(s)
Brain Neoplasms/pathology , Diffusion Magnetic Resonance Imaging/methods , Glioma/pathology , Image Interpretation, Computer-Assisted/methods , Adult , Area Under Curve , Female , Humans , Male , Middle Aged , ROC Curve , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL