Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Talanta ; 272: 125749, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38359723

ABSTRACT

In this work, a sensitive fluorescent sensor toward p-nitrophenol (4-NP) integrating magnetic molecularly imprinted materials and carbon dots (CDs) was proposed. Magnetic material and CDs derived from K3 [Fe(CN)6] and glucose were simultaneously obtained through simple one-step hydrothermal process. Introducing of molecularly imprinted materials based magnetic solid phase extraction (MSPE) endowed the constructed fluorescent sensor with higher sensitivity and selectivity. The significant factors affecting the sensitivity of the sensor toward 4-NP were optimized. Good linearity was obtained between fluorescent intensity of CDs and different concentration of 4-NP from 0.08 to 62.5 µg L-1. The sensitivity of constructed sensor was very low with detection limit of 0.02 µg L-1. Reliable applicability was also proved by the well-pleasing recoveries of 94.2-97.8% with different spiked concentrations of 4-NP in real environmental waters.

2.
Food Chem ; 459: 140352, 2024 Nov 30.
Article in English | MEDLINE | ID: mdl-38991447

ABSTRACT

In this study, a hydrophobic covalent organic framework-functionalized magnetic composite (CoFe2O4@Ti3C2@TAPB-TFTA) with a high specific area with 1,3,5-tris(4-aminophenyl)benzene (TAPB) and 2,3,5,6-tetrafluoroterephthalaldehyde (TFTA) was designed and synthesized through Schiff base reaction. An efficient magnetic solid-phase extraction method was established and combined with gas chromatography-triple quadrupole mass spectrometry to sensitively determine 10 organochlorine and organophosphorus pesticides in tea samples. The established method exhibited good linearity in the range of 0.05-120 µg/L and had low limits of detection (0.013-0.018 µg/L). The method was evaluated with tea samples, and the spiked recoveries of pesticides in different tea samples reached satisfactory values of 85.7-96.8%. Moreover, the adsorption of pesticides was spontaneous and followed Redlich-Peterson isotherm and pseudo-second-order kinetic models. These results demonstrate the sensitivity, effectiveness, and reliability of the proposed method for monitoring organochlorine and organophosphorus pesticides in tea samples, providing a preliminary basis for researchers to reasonably design adsorbents for the efficient extraction of pesticides.


Subject(s)
Food Contamination , Gas Chromatography-Mass Spectrometry , Hydrocarbons, Chlorinated , Metal-Organic Frameworks , Nanocomposites , Organophosphorus Compounds , Pesticides , Solid Phase Extraction , Tea , Tea/chemistry , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/analysis , Hydrocarbons, Chlorinated/chemistry , Hydrocarbons, Chlorinated/analysis , Food Contamination/analysis , Nanocomposites/chemistry , Metal-Organic Frameworks/chemistry , Solid Phase Extraction/methods , Pesticides/chemistry , Pesticides/analysis , Adsorption , Limit of Detection , Pesticide Residues/chemistry , Pesticide Residues/analysis , Pesticide Residues/isolation & purification
3.
J Colloid Interface Sci ; 667: 403-413, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38640659

ABSTRACT

In this study, nitrogen-doped carbon dots (N-CDs) were facilely fabricated by one-pot hydrothermal method with levulinic acid and triethanolamine. A fluorescent sensor array was established for identifying azo compounds including Sudan Orange G (SOG), p-diaminoazobenzene, p-aminoazobenzene, azobenzene and quantitative detection of SOG. Experimental results revealed that azo compounds could quench the fluorescent intensity of N-CDs. Owing to various azo compounds showing different affinities to N-CDs, the sensor array exhibited different fluorescence quenching changes, which were further analyzed with principal component analysis to discriminate azo compounds. The sensor array was able to differentiate and recognize diverse concentrations of azo compounds from 0.25 to 2 mg/L. Simultaneously, a variety of factors affecting the detection of SOG were optimized. Under the optimized conditions, the sensor showed excellent stability and sensitivity. The sensor possessed marvelous linearity in the range of 0.1-1 mg/L and 1-4 mg/L and the detection limit was 27.82 µg/L. Spiked recoveries of 90.8-98.2 % were attained at spiked levels of 0.2 mg/L and 1 mg/L, demonstrating that the constructed fluorescence sensor was dependable and feasible for sensing SOG in environmental water samples.

4.
Plant Sci ; 325: 111489, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36216298

ABSTRACT

Citrus grandis 'Tomentosa' (CGT) (Huajuhong, HJH) is a widely used medicinal plant, which is mainly produced in Guangdong and Guangxi provinces of South China. Particularly, HJH from Huazhou (HZ) county of Guangdong province has been well-regarded as the best national product for geo-herbalism. But the reasons for geo-herbalism property in HJH from HZ county remains a mystery. Therefore, a multi-omics approach was applied to identify the nature of the geo-herbalism in CGT from three different regions. The comprehensive screening of differential metabolites revealed that the Nobiletin content was significantly different in HZ region compared to other regions, and could be employed as a key indicator to determine the geo-herbalism. Furthermore, the high-quality genome (N50 of 9.12 Mb), coupled with genomics and transcriptomics analyses indicated that CGT and Citrus grandis are closely related, with a predicted divergence time of 19.1 million years ago (MYA), and no recent WGD occurred in the CGT, and the bioactive ingredients of CGT were more abundant than that of Citrus grandis. Interestingly, Nobiletin (Polymethoxyflavones) content was identified as a potential indicator of geo-herbalism, and O-methyltransferase (OMT) genes are involved in the synthesis of Polymethoxyflavones. Further multi-omics analysis led to the identification of a novel OMT gene (CtgOMT1) whose transient overexpression displayed significantly higher Nobiletin content, suggesting that CtgOMT1 was involved in the synthesis of Nobiletin. Overall, our findings provide new data resources for geo-herbalism evaluation, germplasm conservation and insights into Nobiletin biosynthesis pathways for the medicinal plant C. grandis 'Tomentosa'.


Subject(s)
Citrus , Plants, Medicinal , Citrus/genetics , Herbal Medicine , China , Plants, Medicinal/genetics
SELECTION OF CITATIONS
SEARCH DETAIL