Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
J Air Waste Manag Assoc ; 63(2): 190-204, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23472303

ABSTRACT

UNLABELLED: This paper examines the relative source contribution to ground-level concentrations of carbon monoxide (CO), nitrogen dioxide (NO2), and PM10 (particulate matter with an aerodynamic diameter < 10 microm) in a coastal urban area due to emissions from an industrial complex with multiple stacks, quarrying activities, and a nearby highway. For this purpose, an inventory of CO, oxide of nitrogen (NO(x)), and PM10 emissions was coupled with the non-steady-state Mesoscale Model 5/California Puff Dispersion Modeling system to simulate individual source contributions under several spatial and temporal scales. As the contribution of a particular source to ground-level concentrations can be evaluated by simulating this single-source emissions or otherwise total emissions except that source, a set of emission sensitivity simulations was designed to examine if CALPUFF maintains a linear relationship between emission rates and predicted concentrations in cases where emitted plumes overlap and chemical transformations are simulated. Source apportionment revealed that ground-level releases (i.e., highway and quarries) extended over large areas dominated the contribution to exposure levels over elevated point sources, despite the fact that cumulative emissions from point sources are higher. Sensitivity analysis indicated that chemical transformations of NO(x) are insignificant, possibly due to short-range plume transport, with CALPUFF exhibiting a linear response to changes in emission rate. The current paper points to the significance of ground-level emissions in contributing to urban air pollution exposure and questions the viability of the prevailing paradigm of point-source emission reduction, especially that the incremental improvement in air quality associated with this common abatement strategy may not accomplish the desirable benefit in terms of lower exposure with costly emissions capping. IMPLICATIONS: The application of atmospheric dispersion models for source apportionment helps in identifying major contributors to regional air pollution. In industrial urban areas where multiple sources with different geometry contribute to emissions, ground-level releases extended over large areas such as roads and quarries often dominate the contribution to ground-level air pollution. Industrial emissions released at elevated stack heights may experience significant dilution, resulting in minor contribution to exposure at ground level. In such contexts, emission reduction, which is invariably the abatement strategy targeting industries at a significant investment in control equipment or process change, may result in minimal return on investment in terms of improvement in air quality at sensitive receptors.


Subject(s)
Air Pollutants/analysis , Air Pollution/analysis , Models, Theoretical , Vehicle Emissions/analysis , Carbon Monoxide/analysis , Mediterranean Region , Nitrogen Dioxide/analysis , Particulate Matter/analysis
2.
J Clin Virol ; 165: 105518, 2023 08.
Article in English | MEDLINE | ID: mdl-37354690

ABSTRACT

BACKGROUND: Commercially available ELISA-based antibody tests are used to approximate vaccination success against SARS-CoV-2 in at-risk patients, but it is unclear whether they correlate with neutralization of the Omicron variant. METHODS: 269 serum samples of a cohort of 44 non-immunosuppressed participants and 65 MTX-treated rheumatic patients taken before and after COVID-19 booster vaccinations were measured using COVID-19 antibody testing systems with wild-type and Omicron BA.1 antigens developed by three different manufacturers (surrogate virus neutralization test cPass, and binding antibody tests QuantiVac and SeraSpot), as well as with a pseudovirus neutralization test (pVNT). The pVNT was considered the gold standard for determining the presence and level of anti-SARS-CoV-2 antibodies. RESULTS: All three wild-type ELISAs showed excellent test performance compared with wild-type neutralization in pVNT. However, out of 56 samples without Omicron BA.1 neutralization in pVNT, 71.4% showed positive results in at least one and 28.6% in all three wild-type ELISAs at the manufacturer-defined cut-offs. Omicron ELISAs showed either decreased specificity (57.1% and 55.4% for binding ELISAs) or sensitivity (51.2% in cPass) compared to Omicron neutralization in pVNT. The proportion of any false positive results among all samples decreased from 26.5% before to 3.2% after booster vaccination, however binding antibody test specificities remained below 70%. CONCLUSIONS: We found a poorer test performance of new Omicron antibody test systems compared to wild-type tests in detecting neutralizing antibodies against the corresponding SARS-CoV-2 variants. Decisions for booster vaccination or passive immunization of at-risk patients should not be based solely on antibody test results.


Subject(s)
COVID-19 , RNA Viruses , Humans , Neutralization Tests , COVID-19 Testing , COVID-19/diagnosis , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral
SELECTION OF CITATIONS
SEARCH DETAIL