Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
J Cell Mol Med ; 27(5): 593-608, 2023 03.
Article in English | MEDLINE | ID: mdl-36756687

ABSTRACT

Centella asiatica is an ethnomedicinal herbaceous species that grows abundantly in tropical and sub-tropical regions of China, India, South-Eastern Asia and Africa. It is a popular nutraceutical that is employed in various forms of clinical and cosmetic treatments. C. asiatica extracts are reported widely in Ayurvedic and Chinese traditional medicine to boost memory, prevent cognitive deficits and improve brain functions. The major bioactive constituents of C. asiatica are the pentacyclic triterpenoid glycosides, asiaticoside and madecassoside, and their corresponding aglycones, asiatic acid and madecassic acid. Asiaticoside and madecassoside have been identified as the marker compounds of C. asiatica in the Chinese Pharmacopoeia and these triterpene compounds offer a wide range of pharmacological properties, including neuroprotective, cardioprotective, hepatoprotective, wound healing, anti-inflammatory, anti-oxidant, anti-allergic, anti-depressant, anxiolytic, antifibrotic, antibacterial, anti-arthritic, anti-tumour and immunomodulatory activities. Asiaticoside and madecassoside are also used extensively in treating skin abnormalities, burn injuries, ischaemia, ulcers, asthma, lupus, psoriasis and scleroderma. Besides medicinal applications, these phytocompounds are considered cosmetically beneficial for their role in anti-ageing, skin hydration, collagen synthesis, UV protection and curing scars. Existing reports and experimental studies on these compounds between 2005 and 2022 have been selectively reviewed in this article to provide a comprehensive overview of the numerous therapeutic advantages of asiaticoside and madecassoside and their potential roles in the medical future.


Subject(s)
Triterpenes , Triterpenes/pharmacology , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Glycosides , Wound Healing
2.
Biotechnol Bioeng ; 120(1): 82-94, 2023 01.
Article in English | MEDLINE | ID: mdl-36224758

ABSTRACT

Plants produce a large number of secondary metabolites, known as phytometabolites that may be employed as medicines, dyes, poisons, and insecticides in the field of medicine, agriculture, and industrial use, respectively. The rise of genome management approaches has promised a factual revolution in genetic engineering. Targeted genome editing in living entities permits the understanding of the biological systems very clearly, and also sanctions to address a wide-ranging objective in the direction of improving features of plant and their yields. The last few years have introduced a number of unique genome editing systems, including transcription activator-like effector nucleases, zinc finger nucleases, and miRNA-regulated clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas9). Genome editing systems have helped in the transformation of metabolic engineering, allowing researchers to modify biosynthetic pathways of different secondary metabolites. Given the growing relevance of editing genomes in plant research, the exciting novel methods are briefly reviewed in this chapter. Also, this chapter highlights recent discoveries on the CRISPR-based modification of natural products in different medicinal plants.


Subject(s)
CRISPR-Cas Systems , Gene Editing , CRISPR-Cas Systems/genetics , Plants/genetics , Metabolic Engineering , Phytochemicals
3.
Environ Res ; 216(Pt 1): 114438, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36179880

ABSTRACT

COVID-19 pandemic has led to the generation of massive plastic wastes, comprising of onetime useable gloves, masks, tissues, and other personal protective equipment (PPE). Recommendations for the employ of single-use disposable masks made up of various polymeric materials like polyethylene, polyurethane, polyacrylonitrile, and polypropylene, polystyrene, can have significant aftermath on environmental, human as well as animal health. Improper disposal and handling of healthcare wastes and lack of proper management practices are creating serious health hazards and an extra challenge for the local authorities designated for management of solid waste. Most of the COVID-19 medical wastes generated are now being treated by incineration which generates microplastic particles (MPs), dioxin, furans, and various toxic metals, such as cadmium and lead. Moreover, natural degradation and mechanical abrasion of these wastes can lead to the generation of MPs which cause a serious health risk to living beings. It is a major threat to aquatic lives and gets into foods subsequently jeopardizing global food safety. Moreover, the presence of plastic is also considered a threat owing to the increased carbon emission and poses a profound danger to the global food chain. Degradation of MPs by axenic and mixed culture microorganisms, such as bacteria, fungi, microalgae etc. can be considered an eco-sustainable technique for the mitigation of the microplastic menace. This review primarily deals with the increase in microplastic pollution due to increased use of PPE along with different disinfection methods using chemicals, steam, microwave, autoclave, and incineration which are presently being employed for the treatment of COVID-19 pandemic-related wastes. The biological treatment of the MPs by diverse groups of fungi and bacteria can be an alternative option for the mitigation of microplastic wastes generated from COVID-19 healthcare waste.


Subject(s)
COVID-19 , Microplastics , Animals , Humans , Plastics/toxicity , COVID-19/prevention & control , Pandemics , Delivery of Health Care
4.
Appl Microbiol Biotechnol ; 107(2-3): 473-489, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36481800

ABSTRACT

In vitro culture of a plant cell, tissue and organ is a marvellous, eco-friendly biotechnological strategy for the production of phytochemicals. With the emergence of recent biotechnological tools, genetic engineering is now widely practiced enhancing the quality and quantity of plant metabolites. Triterpenoid saponins especially asiaticoside and madecassoside of Centella asiatica (L.) Urb. are popularly known for their neuroprotective activity. It has become necessary to increase the production of asiaticoside and madecassoside because of their high pharmaceutical and industrial demand. Thus, the review aims to provide efficient biotechnological tools along with proper strategies. This review also included a comparative analysis of various carbon sources and biotic and abiotic elicitors. The vital roles of a variety of plant growth regulators and their combinations have also been evaluated at different in vitro growth stages of Centella asiatica. Selection of explants, direct and callus-mediated organogenesis, root organogenesis, somatic embryogenesis, synthetic seed production etc. are also highlighted in this study. In a nutshell, this review will present the research outcomes of different biotechnological interventions used to increase the yield of triterpenoid saponins in C. asiatica. KEY POINTS: • Critical and updated assessment on in vitro biotechnology in C. asiatica. • In vitro propagation of C. asiatica and elicitation of triterpenoid saponins production. • Methods for mass producing C. asiatica.


Subject(s)
Centella , Saponins , Triterpenes , Centella/genetics , Centella/metabolism , Triterpenes/metabolism , Plant Extracts/metabolism , Biotechnology , Saponins/metabolism
5.
Physiol Plant ; 174(2): e13642, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35099818

ABSTRACT

The rice and wheat agricultural system is the primary source of food for billions across the world. However, the productivity and long-term sustainability of rice and wheat are threatened by a large number of abiotic stresses, especially salinity stress. Salinity has a significant impact on plant development and productivity and is one of the leading causes of crop yield losses in agricultural soils worldwide. Over the last few decades, several attempts have been undertaken to enhance salinity stress tolerance, most of which have relied on traditional or molecular breeding approaches. These approaches have so far been insufficient in addressing the issues of abiotic stress. However, due to the availability of genome sequences for cereal crops like rice and wheat and the development of genome editing techniques like clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein9 (Cas9), it is now possible to "edit" genes and influence key traits. Here, we review the application of the CRISPR/Cas9 system in both rice (Oryza sativa L.) and wheat (Triticum aestivum L.) to develop salinity tolerant cultivars. The CRISPR/Cas genome editing toolkit holds great promise of producing cereal crops tolerant to salt stress to increase agriculture resilience with a strong impact on the environment and public health.


Subject(s)
Oryza , CRISPR-Cas Systems/genetics , Crops, Agricultural/genetics , Edible Grain/genetics , Genome, Plant/genetics , Oryza/genetics , Salt Tolerance/genetics , Triticum/genetics
6.
Appl Microbiol Biotechnol ; 106(11): 3851-3877, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35596786

ABSTRACT

Camptothecin (CPT) is a monoterpenoid-alkaloid, an anticancer compound from plant. Ever since its discovery in 1996 from the bark of Camptotheca acuminata, various researches have been conducted for enhancing its production. CPT has also been reported in several other species belonging to the plant families Icacinaceae, Rubiaceae, Apocynaceae, Nyssaceae, Betulaceae, Violaceae, Meliaceae, and Gelseminaceae. Out of these, Ophiorrhiza sp. (Rubiaceae) is the next possible candidate for sustainable CPT production after C. acuminata and Nothapodytes nimoonia. Various biotechnological-studies have been conducted on Ophiorrhiza sp. for searching the elite species and the most optimal strategies for CPT production. The genus Ophiorrhiza has been used as medicines for antiviral, antifungal, antimalarial, and anticancer activities. Phytochemical analysis has revealed the presence of alkaloids, flavonoids, triterpenes, and CPT from the plant. Because of the presence of CPT and its herbaceous habit, Ophiorrhiza sp. has now become a hot topic in research area. Currently, for mass production of the elite spp., tissue culture techniques have been implemented. In the past decades, several researchers have contributed on the diversity assessment, phytochemical analysis, mass production, and in vitro production of CPT in Ophiorrhiza sp. In this paper, we review the on the biotechnological strategies, optimal culture medium, micropropagation of Ophiorrhiza sp., effect of PGR on shoot formation, rhizogenesis, callus formation, and enhanced production of CPT for commercial use. KEY POINTS: • Latest literature on in vitro propagation of Ophiorrhiza sp. • Biotechnological production of camptothecin and related compounds • Optimization, elicitation, and transgenic studies in Ophiorrhiza sp.


Subject(s)
Alkaloids , Antineoplastic Agents, Phytogenic , Camptotheca , Magnoliopsida , Rubiaceae , Biotechnology , Camptothecin/analysis
7.
Appl Microbiol Biotechnol ; 106(19-20): 6397-6412, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36107215

ABSTRACT

Aristolochia, belonging to the family Aristolochiaceae, has immense ecological significance due to its large size and huge geographic distribution. In the context of dealing with a genus with a huge number of species like Aristolochia, these markers come in handy to precisely identify a particular species and enumerate the genetic diversity. Also, certain species of Aristolochia are economically important due to the presence of secondary metabolites and vast use in traditional and modern medicine. But, the presence of profitable biochemical constituents in Aristolochia is very low and the breeding process of the plant is highly dependable on pollinators. Hence, identifying different biotechnological approaches to fasten the reproductive cycle of Aristolochia and increase the secondary metabolites is of great interest to the researchers. In this study, a comprehensive review has been established on different types of morphological/anatomical markers (starch grains with "Maltese cross"), phytochemical markers (aristolochic acid, triterpenoid, aristolactam etc.) and genetic markers (ISSR, SSR, DNA bar-coding) for various Aristolochia spp. We have also discussed the applications of different biotechnological tools in Aristolochia spp. which include discrete approaches to promote in vitro germination, in vitro shooting, root induction, somatic embryogenesis, synthetic seed production, acclimatization and hardening and sustainable production of secondary metabolites. In a nutshell, the present review is a first of kind approach to comprehensively demonstrate the genetic diversity studies and biotechnological aspects in Aristolochia spp. KEY POINTS: • Insights into the in vitro propagation of Aristolochia spp. • In vitro production and optimization of secondary metabolites. • Assessment of genetic diversity by molecular markers.


Subject(s)
Aristolochia , Triterpenes , Aristolochia/chemistry , Aristolochia/genetics , Genetic Markers , Genetic Variation , Starch
8.
Appl Microbiol Biotechnol ; 106(13-16): 4867-4883, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35819514

ABSTRACT

Rauvolfia serpentina (L). Benth. ex Kurz. (Apocynaceae), commonly known as Sarpagandha or Indian snakeroot, has long been used in the traditional treatment of snakebites, hypertension, and mental illness. The plant is known to produce an array of indole alkaloids such as reserpine, ajmaline, amalicine, etc. which show immense pharmacological and biomedical significance. However, owing to its poor seed viability, lesser germination rate and overexploitation for several decades for its commercially important bioactive constituents, the plant has become endangered in its natural habitat. The present review comprehensively encompasses the various biotechnological tools employed in this endangered Ayurvedic plant for its in vitro propagation, role of plant growth regulators and additives in direct and indirect regeneration, somatic embryogenesis and synthetic seed production, secondary metabolite production in vitro, and assessment of clonal fidelity using molecular markers and genetic transformation. In addition, elicitation and other methods of optimization of its indole-alkaloids are also described herewith. KEY POINTS: • Latest literature on in vitro propagation of Rauvolfia serpentina • Biotechnological production and optimization of indole alkaloids • Clonal fidelity and transgenic studies in R. serpentina.


Subject(s)
Rauwolfia , Secologanin Tryptamine Alkaloids , Biotechnology , Indole Alkaloids/metabolism , Plant Roots/metabolism , Rauwolfia/genetics , Secologanin Tryptamine Alkaloids/metabolism
9.
Appl Microbiol Biotechnol ; 106(3): 905-929, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35039927

ABSTRACT

Polyamines (PAs) are ubiquitous low-molecular-weight, aliphatic compounds with wide as well as complex application in fundamental areas of plant growth and development. PAs are mediator of basic metabolism of organisms which include cell division and differentiation, biotic and abiotic stress tolerance, reversal of oxidative damage, stabilization of nucleic acids, and protein and phospholipid binding. In plants, it attributes in direct and indirect organogenesis, endogenous phytohormone regulation, cellular compartmentalization, fruit and flower development, senescence, and secondary metabolite production which are highly tuned as first line of defense response. There are several aspects of polyamine-directed mechanism that regulate overall plant growth in vitro and in vivo. In the present review, we have critically discussed the role played by polyamine on the enhanced production of bioactive natural products and how the same polyamines are functioning against different environmental stress conditions, i.e., salinity, drought, high CO2 content, herbivory, and physical wounding. The role of polyamines on elicitation process has been highlighted previously, but it is important to note that its activity as growth regulator under in vitro condition is correlated with an array of intertwined mechanism and physiological tuning. Medicinal plants under different developmental stages of micropropagation are characterized with different functional aspects and regulatory changes during embryogenesis and organogenesis. The effect of precursor molecules as well as additives and biosynthetic inhibitors of polyamines in rhizogenesis, callogenesis, tuberization, embryogenesis, callus formation, and metabolite production has been discussed thoroughly. The beneficial effect of exogenous application of PAs in elicitation of secondary metabolite production, plant growth and morphogenesis and overall stress tolerance are summarized in this present work. KEY POINTS: • Polyamines (PAs) play crucial roles in in vitro organogenesis. • PAs elicitate bioactive secondary metabolites (SMs). • Transgenic studies elucidate and optimize PA biosynthetic genes coding SMs.


Subject(s)
Plants, Medicinal , Polyamines , Biotechnology , Metabolomics , Plant Development
10.
Phytother Res ; 36(12): 4425-4476, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36256521

ABSTRACT

Piper longum (family Piperaceae), commonly known as "long-pepper" or "Pippali" grows as a perennial shrub or as an herbaceous vine. It is native to the Indo-Malaya region and widely distributed in the tropical and subtropical world including the Indian subcontinent, Sri Lanka, Middle-East, and America. The fruits are mostly used as culinary spice and preservatives and are also a potent remedy in various traditional medicinal systems against bronchitis, cough, cold, snakebite, and scorpion-sting and are also used as a contraceptive. Various bioactive-phytochemicals including alkaloids, flavonoids, esters, and steroids were identified from the plant extracts and essential oils from the roots and fruits were reported as antimicrobial, antiparasitic, anthelminthic, mosquito-larvicidal, antiinflammatory, analgesic, antioxidant, anticancer, neuro-pharmacological, antihyperglycaemic, hepato-protective, antihyperlipidaemic, antiangiogenic, immunomodulatory, antiarthritic, antiulcer, antiasthmatic, cardioprotective, and anti-snake-venom agents. Many of its pharmacological properties were attributed to its antioxidative and antiinflammatory effects and its ability to modulate a number of signalling pathways and enzymes. This review comprehensively encompasses information on habit, distribution, ethnobotany, phytochemistry, and pharmacology of P. longum in relation to its medicinal importance and health benefits to validate the traditional claims supported by specific scientific experiments. In addition, it also discusses the safety and toxicity studies, application of green synthesis and nanotechnology as well as clinical trials performed with the plant also elucidating research gaps and future perspectives of its multifaceted uses.


Subject(s)
Cough , Ethnobotany , Humans , Malaysia
15.
Naunyn Schmiedebergs Arch Pharmacol ; 396(5): 851-863, 2023 05.
Article in English | MEDLINE | ID: mdl-36656353

ABSTRACT

Mangiferin (1,3,6,7-tetrahydroxy-2-[3,4,5-trihydroxy-6-(hydroxymethyl) oxan-2-yl] xanthen-9-one) is a bioactive component derived primarily from the mango tree. Belonging to the Xanthone family, its structure allows it to engage with a variety of pharmacological targets. The symmetric linked core of xanthones has a heterogeneous biogenetic background. The carbon atoms are designated in a biochemical order, which reveals the reason of ring A (C1-C4) being referred to as acetate originated, and ring B (C5-C8) is referred to as shikimate originated. The antibacterial, hypocholesterolemic, antiallergic, cardiotonic, antidiabetic, anti-neoplastic, neuroprotective, antioxidant and immunomodulatory properties have all been demonstrated for the secondary metabolite. This study assessed and explained the important medical properties of mangiferin available in published literature, as well as its natural source, biosynthesis, absorption and bioavailability; multiple administration routes; metabolism; nanotechnology for enhanced efficacy of mangiferin and its toxicity, to aid the anticipated on-going potential of mangiferin as a novel diagnostic treatment.


Subject(s)
Mangifera , Xanthones , Xanthones/pharmacology , Xanthones/therapeutic use , Hypoglycemic Agents/therapeutic use , Plant Extracts/pharmacology , Mangifera/chemistry
16.
Naunyn Schmiedebergs Arch Pharmacol ; 396(2): 229-238, 2023 02.
Article in English | MEDLINE | ID: mdl-36251044

ABSTRACT

Cryptolepine (1,5-methyl-10H-indolo[3,2-b]quinoline), an indoloquinoline alkaloid, found in the roots of Cryptolepis sanguinolenta (Lindl.) Schltr (family: Periplocaceae), is associated with the suppression of cancer and protozoal infections. Cryptolepine also exhibits anti-bacterial, anti-fungal, anti-hyperglycemic, antidiabetic, anti-inflammatory, anti-hypotensive, antipyretic, and antimuscarinic properties. This review of the latest research data can be exploited to create a basis for the discovery of new cryptolepine-based drugs and their analogues in the near future. PubMed, Scopus, and Google Scholar databases were searched to select and collect data from the existing literature on cryptolepine and their pharmacological properties. Several in vitro studies have demonstrated the potential of cryptolepine A as an anticancer and antimalarial molecule, which is achieved through inhibiting DNA synthesis and topoisomerase II. This review summarizes the recent developments of cryptolepine pharmacological properties and functional mechanisms, providing information for future research on this natural product.


Subject(s)
Alkaloids , Antimalarials , Quinolines , Indole Alkaloids/pharmacology , Indole Alkaloids/therapeutic use , Quinolines/pharmacology , Quinolines/therapeutic use , Alkaloids/pharmacology , Alkaloids/therapeutic use , Antimalarials/pharmacology
17.
Biotechnol J ; 17(7): e2100507, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34882991

ABSTRACT

An incredible array of natural products is produced by plants that serve several ecological functions, including protecting them from herbivores and microbes, attracting pollinators, and dispersing seeds. In addition to their obvious medical applications, natural products serve as flavoring agents, fragrances, and many other uses by humans. With the increasing demand for natural products and the development of various gene engineering systems, researchers are trying to modify the plant genome to increase the biosynthetic pathway of the compound of interest or blocking the pathway of unwanted compound synthesis. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 has had widespread success in genome editing due to the system's high efficiency, ease of use, and accuracy which revolutionized the genome editing system in living organisms. This study highlights the method of the CRISPR/Cas system, its application in different organisms including microbes, algae, fungi, and also higher plants in natural product research, and its shortcomings and future prospects.


Subject(s)
Biological Products , CRISPR-Cas Systems , CRISPR-Cas Systems/genetics , Gene Editing/methods , Genetic Engineering , Humans , Plants/genetics
18.
Naunyn Schmiedebergs Arch Pharmacol ; 395(12): 1525-1536, 2022 12.
Article in English | MEDLINE | ID: mdl-36173445

ABSTRACT

Aloe vera (L.) Burm.f. is nicknamed the 'Miracle plant' or sometimes as the 'Wonder plant'. It is a plant that has been used since ancient times for the innumerable health benefits associated with it. It is one of the important plants that has its use in conventional medicinal treatments. It is a perennial succulent, drought-tolerant member of the family Asphodelaceae. There are scores of properties associated with the plant that help in curing various forms of human ailments. Extracts and gels obtained from plants have been shown to be wonderful healers of different conditions, mainly various skin problems. Also, this plant is popular in the cosmetics industry. The underlying properties of the plant are now mainly associated with the natural phytochemicals present in the plant. Diverse groups of phytoingredients are found in the plant, including various phenolics, amino acids, sugars, vitamins, and different other organic compounds, too. One of the primary ingredients found in the plant is the aloin molecule. It is an anthraquinone derivative and exists as an isomer of Aloin A and Aloin B. Barbaloin belonging to the first group is a glucoside of the aloe-emodin anthrone molecule. Various types of pharmacological properties exhibited by the plant can be attributed to this chemical. Few significant ones are antioxidant, anti-inflammatory, anti-diabetic, anti-cancer, anti-microbial, and anti-viral, along with their different immunity-boosting actions. Recently, molecular coupling studies have also found the role of these molecules as a potential cure against the ongoing COVID-19 disease. This study comprehensively focuses on the numerous pharmacological actions of the primary compound barbaloin obtained from the Aloe vera plant along with the mechanism of action and the potent application of these natural molecules under various conditions.


Subject(s)
Aloe , COVID-19 , Humans , Aloe/chemistry , Anthracenes/pharmacology , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry
19.
Front Pharmacol ; 13: 824132, 2022.
Article in English | MEDLINE | ID: mdl-35645819

ABSTRACT

Background: COPD (chronic obstructive pulmonary disease) is a serious health problem worldwide. Present treatments are insufficient and have severe side effects. There is a critical shortage of possible alternative treatments. Medicinal herbs are the most traditional and widely used therapy for treating a wide range of human illnesses around the world. In several countries, different plants are used to treat COPD. Purpose: In this review, we have discussed several known cellular and molecular components implicated in COPD and how plant-derived chemicals might modulate them. Methods: We have discussed how COVID-19 is associated with COPD mortality and severity along with the phytochemical roles of a few plants in the treatment of COPD. In addition, two tables have been included; the first summarizes different plants used for the treatment of COPD, and the second table consists of different kinds of phytochemicals extracted from plants, which are used to inhibit inflammation in the lungs. Conclusion: Various plants have been found to have medicinal properties against COPD. Many plant extracts and components may be used as novel disease-modifying drugs for lung inflammatory diseases.

20.
Front Pharmacol ; 13: 827411, 2022.
Article in English | MEDLINE | ID: mdl-35592415

ABSTRACT

Attention deficit hyperactivity disorder (ADHD) is commonly a neurodevelopmental behavioural disorder in children and adolescents. Mainly characterized by symptoms like lack of attention, hyperactivity, and impulsiveness, it can impact the overall mental development of the one affected. Several factors, both genetic and non-genetic, can be responsible for this disorder. Although several traditional treatment methods involve medication and other counselling techniques, they also come with different side effects. Hence, the choice is now shifting to alternative treatment techniques. Herbal treatments are considered one of the most popular complementary and alternative medicine (CAM) administered. However, issues related to the safety and efficacy of herbal remedies for the treatment of ADHD need to be investigated further. This study aims to find out the recent advancement in evidence-based use of herbal remedies for ADHD by a comprehensive and systematic review that depicts the results of the published works on herbal therapy for the disorder. The electronic databases and the references retrieved from the included studies present related randomized controlled trials (RCTs) and open-label studies. Seven RCTs involving children and adolescents diagnosed with ADHD met the inclusion criteria. There is a fair indication of the efficacy and safety of Melissa officinalis L., Bacopa monnieri (L.) Wettst., Matricaria chamomilla L., and Valeriana officinalis L. from the studies evaluated in this systematic review for the treatment of various symptoms of ADHD. Limited evidence was found for Ginkgo biloba L. and pine bark extract. However, various other preparations from other plants did not show significant efficacy. There is inadequate proof to strongly support and recommend the administration of herbal medicines for ADHD, but more research is needed in the relevant field to popularize the alternative treatment approach.

SELECTION OF CITATIONS
SEARCH DETAIL