Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
BMC Microbiol ; 18(1): 39, 2018 04 20.
Article in English | MEDLINE | ID: mdl-29678140

ABSTRACT

BACKGROUND: Global warming has triggered an increase in the prevalence and severity of coral disease, yet little is known about coral/pathogen interactions in the early stages of infection. The point of entry of the pathogen and the route that they take once inside the polyp is currently unknown, as is the coral's capacity to respond to infection. To address these questions, we developed a novel method that combines stable isotope labelling and microfluidics with transmission electron microscopy (TEM) and nanoscale secondary ion mass spectrometry (NanoSIMS), to monitor the infection process between Pocillopora damicornis and Vibrio coralliilyticus under elevated temperature. RESULTS: Three coral fragments were inoculated with 15N-labeled V. coralliilyticus and then fixed at 2.5, 6 and 22 h post-inoculation (hpi) according to the virulence of the infection. Correlative TEM/NanoSIMS imaging was subsequently used to visualize the penetration and dispersal of V. coralliilyticus and their degradation or secretion products. Most of the V. coralliilyticus cells we observed were located in the oral epidermis of the fragment that experienced the most virulent infection (2.5 hpi). In some cases, these bacteria were enclosed within electron dense host-derived intracellular vesicles. 15N-enriched pathogen-derived breakdown products were visible in all tissue layers of the coral polyp (oral epidermis, oral gastrodermis, aboral gastrodermis), at all time points, although the relative 15N-enrichment depended on the time at which the corals were fixed. Tissues in the mesentery filaments had the highest density of 15N-enriched hotspots, suggesting these tissues act as a "collection and digestion" site for pathogenic bacteria. Closer examination of the sub-cellular structures associated with these 15N-hotspots revealed these to be host phagosomal and secretory cells/vesicles. CONCLUSIONS: This study provides a novel method for tracking bacterial infection dynamics at the levels of the tissue and single cell and takes the first steps towards understanding the complexities of infection at the microscale, which is a crucial step towards understanding how corals will fare under global warming.


Subject(s)
Animal Diseases/microbiology , Anthozoa/microbiology , Microfluidics/methods , Spectrometry, Mass, Secondary Ion/methods , Spectrometry, Mass, Secondary Ion/veterinary , Vibrio Infections/microbiology , Vibrio Infections/veterinary , Vibrio/pathogenicity , Animals , Anthozoa/cytology , Anthozoa/immunology , Epidermal Cells/microbiology , Epidermal Cells/pathology , Epidermis/microbiology , Epidermis/pathology , Global Warming , Isotope Labeling , Israel , Microscopy, Electron, Transmission , Temperature , Vibrio Infections/pathology , Virulence
2.
ISME J ; 13(4): 989-1003, 2019 04.
Article in English | MEDLINE | ID: mdl-30542077

ABSTRACT

Under homoeostatic conditions, the relationship between the coral Pocillopora damicornis and Vibrio coralliilyticus is commensal. An increase in temperature, or in the abundance of V. coralliilyticus, can turn this association pathogenic, causing tissue lysis, expulsion of the corals' symbiotic algae (genus Symbiodinium), and eventually coral death. Using a combination of microfluidics, fluorescence microscopy, stable isotopes, electron microscopy and NanoSIMS isotopic imaging, we provide insights into the onset and progression of V. coralliilyticus infection in the daytime and at night, at the tissue and (sub-)cellular level. The objective of our study was to connect the macro-scale behavioural response of the coral to the micro-scale nutritional interactions that occur between the host and its symbiont. In the daytime, polyps enhanced their mucus production, and actively spewed pathogens. Vibrio infection primarily resulted in the formation of tissue lesions in the coenosarc. NanoSIMS analysis revealed infection reduced 13C-assimilation in Symbiodinium, but increased 13C-assimilation in the host. In the night incubations, no mucus spewing was observed, and a mucus film was formed on the coral surface. Vibrio inoculation and infection at night showed reduced 13C-turnover in Symbiodinium, but did not impact host 13C-turnover. Our results show that both the nutritional interactions that occur between the two symbiotic partners and the behavioural response of the host organism play key roles in determining the progression and severity of host-pathogen interactions. More generally, our approach provides a new means of studying interactions (ranging from behavioural to metabolic scales) between partners involved in complex holobiont systems, under both homoeostatic and pathogenic conditions.


Subject(s)
Anthozoa/microbiology , Symbiosis , Vibrio/physiology , Animals , Anthozoa/anatomy & histology , Anthozoa/metabolism , Anthozoa/physiology , Behavior, Animal , Dinoflagellida/metabolism , Host-Pathogen Interactions , Nutrients , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL