Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Proc Natl Acad Sci U S A ; 120(25): e2215711120, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37310997

ABSTRACT

Multiple myeloma (MM), a hematologic malignancy that preferentially colonizes the bone marrow, remains incurable with a survival rate of 3 to 6 mo for those with advanced disease despite great efforts to develop effective therapies. Thus, there is an urgent clinical need for innovative and more effective MM therapeutics. Insights suggest that endothelial cells within the bone marrow microenvironment play a critical role. Specifically, cyclophilin A (CyPA), a homing factor secreted by bone marrow endothelial cells (BMECs), is critical to MM homing, progression, survival, and chemotherapeutic resistance. Thus, inhibition of CyPA provides a potential strategy to simultaneously inhibit MM progression and sensitize MM to chemotherapeutics, improving therapeutic response. However, inhibiting factors from the bone marrow endothelium remains challenging due to delivery barriers. Here, we utilize both RNA interference (RNAi) and lipid-polymer nanoparticles to engineer a potential MM therapy, which targets CyPA within blood vessels of the bone marrow. We used combinatorial chemistry and high-throughput in vivo screening methods to engineer a nanoparticle platform for small interfering RNA (siRNA) delivery to bone marrow endothelium. We demonstrate that our strategy inhibits CyPA in BMECs, preventing MM cell extravasation in vitro. Finally, we show that siRNA-based silencing of CyPA in a murine xenograft model of MM, either alone or in combination with the Food and Drug Administration (FDA)-approved MM therapeutic bortezomib, reduces tumor burden and extends survival. This nanoparticle platform may provide a broadly enabling technology to deliver nucleic acid therapeutics to other malignancies that home to bone marrow.


Subject(s)
Multiple Myeloma , United States , Humans , Animals , Mice , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Bone Marrow , RNA, Small Interfering/genetics , Endothelial Cells , Cyclophilin A , Lipids , Tumor Microenvironment
2.
Nat Mater ; 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39223270

ABSTRACT

Nanoparticles are promising for drug delivery applications, with several clinically approved products. However, attaining high nanoparticle accumulation in solid tumours remains challenging. Here we show that tumour cell-derived small extracellular vesicles (sEVs) block nanoparticle delivery to tumours, unveiling another barrier to nanoparticle-based tumour therapy. Tumour cells secrete large amounts of sEVs in the tumour microenvironment, which then bind to nanoparticles entering tumour tissue and traffic them to liver Kupffer cells for degradation. Knockdown of Rab27a, a gene that controls sEV secretion, decreases sEV levels and improves nanoparticle accumulation in tumour tissue. The therapeutic efficacy of messenger RNAs encoding tumour suppressing and proinflammatory proteins is greatly improved when co-encapsulated with Rab27a small interfering RNA in lipid nanoparticles. Together, our results demonstrate that tumour cell-derived sEVs act as a defence system against nanoparticle tumour delivery and that this system may be a potential target for improving nanoparticle-based tumour therapies.

3.
Small ; 20(11): e2304378, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38072809

ABSTRACT

With six therapies approved by the Food and Drug Association, chimeric antigen receptor (CAR) T cells have reshaped cancer immunotherapy. However, these therapies rely on ex vivo viral transduction to induce permanent CAR expression in T cells, which contributes to high production costs and long-term side effects. Thus, this work aims to develop an in vivo CAR T cell engineering platform to streamline production while using mRNA to induce transient, tunable CAR expression. Specifically, an ionizable lipid nanoparticle (LNP) is utilized as these platforms have demonstrated clinical success in nucleic acid delivery. Though LNPs often accumulate in the liver, the LNP platform used here achieves extrahepatic transfection with enhanced delivery to the spleen, and it is further modified via antibody conjugation (Ab-LNPs) to target pan-T cell markers. The in vivo evaluation of these Ab-LNPs confirms that targeting is necessary for potent T cell transfection. When using these Ab-LNPs for the delivery of CAR mRNA, antibody and dose-dependent CAR expression and cytokine release are observed along with B cell depletion of up to 90%. In all, this work conjugates antibodies to LNPs with extrahepatic tropism, evaluates pan-T cell markers, and develops Ab-LNPs capable of generating functional CAR T cells in vivo.


Subject(s)
Nanoparticles , Receptors, Chimeric Antigen , Receptors, Chimeric Antigen/genetics , Liposomes , Transfection , Antibodies , Cell Engineering , RNA, Small Interfering
4.
Nat Mater ; 22(12): 1571-1580, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37696939

ABSTRACT

Chimeric antigen receptor T (CAR T) cell immunotherapy is successful at treating many cancers. However, it often induces life-threatening cytokine release syndrome (CRS) and neurotoxicity. Here, we show that in situ conjugation of polyethylene glycol (PEG) to the surface of CAR T cells ('PEGylation') creates a polymeric spacer that blocks cell-to-cell interactions between CAR T cells, tumour cells and monocytes. Such blockage hinders intensive tumour lysing and monocyte activation by CAR T cells and, consequently, decreases the secretion of toxic cytokines and alleviates CRS-related symptoms. Over time, the slow expansion of CAR T cells decreases PEG surface density and restores CAR T cell-tumour-cell interactions to induce potent tumour killing. This occurs before the restoration of CAR T cell-monocyte interactions, opening a therapeutic window for tumour killing by CAR T cells before monocyte overactivation. Lethal neurotoxicity is also lower when compared with treatment with the therapeutic antibody tocilizumab, demonstrating that in situ PEGylation of CAR T cells provides a materials-based strategy for safer cellular immunotherapy.


Subject(s)
Neoplasms , Neurotoxicity Syndromes , Receptors, Chimeric Antigen , Humans , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/metabolism , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/therapeutic use , Immunotherapy, Adoptive , Neurotoxicity Syndromes/drug therapy , Neurotoxicity Syndromes/metabolism , T-Lymphocytes
5.
J Am Chem Soc ; 144(22): 9926-9937, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35616998

ABSTRACT

The development of lipid nanoparticle (LNP) formulations for targeting the bone microenvironment holds significant potential for nucleic acid therapeutic applications including bone regeneration, cancer, and hematopoietic stem cell therapies. However, therapeutic delivery to bone remains a significant challenge due to several biological barriers, such as low blood flow in bone, blood-bone marrow barriers, and low affinity between drugs and bone minerals, which leads to unfavorable therapeutic dosages in the bone microenvironment. Here, we construct a series of bisphosphonate (BP) lipid-like materials possessing a high affinity for bone minerals, as a means to overcome biological barriers to deliver mRNA therapeutics efficiently to the bone microenvironment in vivo. Following in vitro screening of BP lipid-like materials formulated into LNPs, we identified a lead BP-LNP formulation, 490BP-C14, with enhanced mRNA expression and localization in the bone microenvironment of mice in vivo compared to 490-C14 LNPs in the absence of BPs. Moreover, BP-LNPs enhanced mRNA delivery and secretion of therapeutic bone morphogenetic protein-2 from the bone microenvironment upon intravenous administration. These results demonstrate the potential of BP-LNPs for delivery to the bone microenvironment, which could potentially be utilized for a range of mRNA therapeutic applications including regenerative medicine, protein replacement, and gene editing therapies.


Subject(s)
Lipids , Nanoparticles , Animals , Diphosphonates/pharmacology , Liposomes , Mice , RNA, Messenger/genetics , RNA, Small Interfering/genetics
6.
Small ; 18(27): e2201672, 2022 07.
Article in English | MEDLINE | ID: mdl-35665442

ABSTRACT

It is challenging to treat multidrug-resistant tumors because such tumors are resistant to a broad spectrum of structurally and functionally unrelated drugs. Herein, treatment of multidrug-resistant tumors using red-light-responsive metallopolymer nanocarriers that are conjugated with the anticancer drug chlorambucil (CHL) and encapsulated with the anticancer drug doxorubicin (DOX) is reported. An amphiphilic metallopolymer PolyRuCHL that contains a poly(ethylene glycol) (PEG) block and a red-light-responsive ruthenium (Ru)-containing block is synthesized. Chlorambucil is covalently conjugated to the Ru moieties of PolyRuCHL. Encapsulation of DOX into PolyRuCHL in an aqueous solution results in DOX@PolyRuCHL micelles. The DOX@PolyRuCHL micelles are efficiently taken up by the multidrug-resistant breast cancer cell line MCF-7R and which carries DOX into the cells. Free DOX, without the nanocarriers, is not taken up by MCF-7R or pumped out of MCF-7R via P-glycoproteins. Red light irradiation of DOX@PolyRuCHL micelles triggers the release of chlorambucil-conjugated Ru moieties and DOX. Both act synergistically to inhibit the growth of multidrug-resistant cancer cells. Furthermore, the inhibition of the growth of multidrug-resistant tumors in a mouse model using DOX@PolyRuCHL micelles is demonstrated. The design of red-light-responsive metallopolymer nanocarriers with both conjugated and encapsulated drugs opens up an avenue for photoactivated chemotherapy against multidrug-resistant tumors.


Subject(s)
Antineoplastic Agents , Ruthenium , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Chlorambucil/pharmacology , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Drug Carriers/pharmacology , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Humans , Mice , Micelles , Phototherapy , Polyethylene Glycols , Polymers/pharmacology
7.
Nano Lett ; 20(7): 5465-5472, 2020 07 08.
Article in English | MEDLINE | ID: mdl-32573235

ABSTRACT

The use of glycoside prodrugs is a promising strategy for developing new targeted medicines for chemotherapy. However, the in vivo utility of such prodrugs is hindered by insufficient activation and the lack of convenient synthetic methods. We have developed an innovative strategy for synthesizing ketal glycoside prodrugs that are unique in being activated by a dual enzyme- and acid-triggered self-immolative mechanism. Amphiphilic glucosyl acetone-based ketal-linked etoposide glycoside prodrug isomers were synthesized and fabricated into excipient-free nanoparticles for effective cancer prodrug monotherapy. Hydrolysis of the glycosidic linkage or the ketal linkage triggered hydrolysis of the other linkage, which resulted in spontaneous self-immolative hydrolysis of the prodrugs. Nanoparticles of the prodrug isomer that was the most labile in a lysosome-mimicking environment displayed high intratumoral accumulation and strong antitumor activity in an A549 xenograft mouse model. Our strategy may be useful for the development of stimulus-responsive self-immolative prodrugs and their nanomedicines.


Subject(s)
Nanoparticles , Neoplasms , Prodrugs , Animals , Glycosides , Mice , Nanomedicine , Neoplasms/drug therapy
8.
J Am Chem Soc ; 142(4): 1735-1739, 2020 01 29.
Article in English | MEDLINE | ID: mdl-31880437

ABSTRACT

Photothermal therapy (PTT) and photodynamic therapy (PDT) have emerged as effective approaches for cancer treatment. Herein, we present atomic-level scale (0.5 nm thickness) ultrathin sulfur-doped molybdenum oxide nanorings (S-MoOx A-NRs) and with surface coating of polyethylene glycol (PEG) (PEG@S-MoOx A-NRs). This nanomaterial shows high absorbance in the near-infrared (NIR) range and can be used as a sensitive photoacoustic imaging (PAI) contrast agent. Upon NIR irradiation, the particles show high photothermal conversion and reactive oxygen species (ROS) generation, which effectively kills cancer cells both in vitro and in vivo. The PEG@S-MoOx A-NRs allow PAI and synergistic PTT/PDT therapy, which is demonstrated as a promising theranostic strategy for future cancer therapy.


Subject(s)
Nanostructures , Neoplasms/therapy , Photoacoustic Techniques/methods , Photochemotherapy/methods , Phototherapy/methods , Combined Modality Therapy , Humans , Infrared Rays , Neoplasms/drug therapy , Neoplasms/metabolism , Photosensitizing Agents/therapeutic use , Reactive Oxygen Species/metabolism
10.
Nano Lett ; 18(10): 6301-6311, 2018 10 10.
Article in English | MEDLINE | ID: mdl-30240228

ABSTRACT

Efficient small interfering RNA (siRNA) delivery in the presence of serum is of crucial importance for effective gene therapy. Fluorinated vectors are considered to be attractive candidates for siRNA-mediated gene therapy because of their delivery efficacy in serum-containing media. However, the mechanisms driving the superior gene transfection behavior of fluorinated vectors are still not well-understood, and comprehensive investigations are warranted. Herein, we fabricated a library of perfluorooctanoyl fluoride-fluorinated (PFF-fluorinated) oligoethylenimines (f xOEIs, x is the PFF:OEI feeding ratio), which can readily form nanoassemblies (f xOEI NAs) capable of efficient siRNA delivery in cells cultured in medium both devoid of and supplemented with fetal bovine serum (FBS). The gene silencing test in serum-containing medium revealed that the f0.7OEI/siRNA NAs achieved a luciferase silencing of ∼88.4% in Luc-HeLa cells cultured in FBS-containing medium, which was almost 2-fold greater than the silencing efficacy of siRNA delivered by the commercially available vector Lipo 2000 (∼48.8%). High levels of apolipoprotein B silencing were also achieved by f0.7OEI/siRNA NAs in vivo. For an assessment of the underlying mechanisms of the efficacy of gene silencing of fluorinated vectors, two alkylated OEIs, aOEI-C8 and aOEI-C12, were fabricated as controls with similar molecular structure and hydrophobicity to that of f0.7OEI, respectively. In vitro investigations showed that the superior gene delivery exhibited by f0.7OEI NAs derived from the potent endosomal disruption capability of fluorinated vectors in the presence of serum, which was essentially attributed to the serum protein adsorption resistance of the f0.7OEI NAs. Therefore, this work provides an innovative approach to siRNA delivery as well as insights into fluorine-associated serum resistance.

11.
Nat Mater ; 21(6): 616-617, 2022 06.
Article in English | MEDLINE | ID: mdl-35606430
12.
Bioconjug Chem ; 28(1): 239-243, 2017 01 18.
Article in English | MEDLINE | ID: mdl-27731973

ABSTRACT

Ultrasmall nanoparticles provide us with essential alternatives for designing more efficient nanocarriers for drug delivery. However, the fast clearance of ultrasmall nanoparticles limits their application to some extent. One of the most frequently used compound to slow the clearance of nanocarriers and nanodrugs is PEG, which is also approved by FDA. Nonetheless, few reports explored the effect of the PEGylation of ultrasmall nanoparticles on their behavior in vivo. Herein, we investigated the impact of different PEG grafting level of 2 nm core sized gold nanoparticles on their biological behavior in tumor-bearing mice. The results indicate that partial (∼50%) surface PEGylation could prolong the blood circulation and increase the tumor accumulation of ultrasmall nanoparticles to a maximum extent, which guide us to build more profitable small-sized nanocarriers for drug delivery.


Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Animals , Drug Carriers , Humans , MCF-7 Cells , Mice , Surface Properties
13.
Anal Chem ; 87(12): 6251-7, 2015 Jun 16.
Article in English | MEDLINE | ID: mdl-26008220

ABSTRACT

Manganese (Mn)-based nanoparticles have been proved to be promising MR T1 contrast agents for the diagnosis of brain tumors. However, most of them exhibit a low relaxation rate, resulting in an insufficient enhancement effect on tiny gliomas. Herein, we developed gadolinium (Gd)-doped MnCO3 nanoparticles with a size of 11 nm via the thermal decomposition of Mn-oleate in the presence of Gd-oleate. Owing to the small size and Gd doping, these Gd-doped MnCO3 NPs, when endowed with excellent aqueous dispersibility and colloidal stability, exhibited a high r1 relaxivity of 6.81 mM(-1) s(-1). Moreover, the Gd/MnCO3 NPs were used as a reliable platform to construct a glioma-targeted MR/fluorescence bimodal nanoprobe. The high relaxivity, the bimodal imaging capability, and the specificity nominate the multifunctional Gd doped MnCO3 NPs as an effective nanoprobe for the diagnostic imaging of tiny brain gliomas with an improved efficacy.


Subject(s)
Brain/diagnostic imaging , Carbonates/chemistry , Contrast Media/chemistry , Gadolinium/chemistry , Glioma/diagnostic imaging , Magnetic Resonance Imaging , Manganese/chemistry , Nanoparticles/chemistry , Animals , Brain/pathology , Contrast Media/chemical synthesis , Fluorescence , Glioma/diagnosis , Humans , Mice , Mice, Nude , Microscopy, Confocal , NIH 3T3 Cells , Neoplasms, Experimental/diagnosis , Neoplasms, Experimental/diagnostic imaging , Radiography , Tumor Cells, Cultured
14.
Langmuir ; 30(36): 10933-9, 2014 Sep 16.
Article in English | MEDLINE | ID: mdl-25157595

ABSTRACT

The development of multimodal nanoprobes is highly desired in medical imaging because it integrates the advantages of multiple imaging modes. In this study, the gadolinium-doped green luminescent carbon dots (Gd-CDs) were prepared by the simple one-step microwave-assisted polyol method. The obtained Gd-CDs emitted a unique green photoluminescence with a quantum yield of 5.4%. The Gd-CDs exhibited a low cytotoxicity and could optically label the C6 glioma cells. Meanwhile, the r1 relaxivity of Gd-CDs was measured to be 11.356 mM(-1) s(-1). This high r1 value together with the r2/r1 ratio close to 1 nominates Gd-CDs as an excellent T1 contrast agent for magnetic resonance imaging. These Gd-CDs combining two complementary imaging modalities are therefore a promising bimodal nanoprobe in medical imaging for a better diagnosis.


Subject(s)
Carbon/chemistry , Gadolinium/chemistry , Luminescence , Microwaves , Molecular Imaging/methods , Nanostructures/chemistry , Polymers/chemistry , Carbon/adverse effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Fluorescent Dyes/chemistry , Gadolinium/adverse effects , Glioma/diagnosis , Glioma/pathology , Humans , Nanostructures/adverse effects , Polymers/adverse effects , Structure-Activity Relationship
15.
Nat Rev Drug Discov ; 23(8): 607-625, 2024 08.
Article in English | MEDLINE | ID: mdl-38951662

ABSTRACT

In situ cancer vaccination refers to any approach that exploits tumour antigens available at a tumour site to induce tumour-specific adaptive immune responses. These approaches hold great promise for the treatment of many solid tumours, with numerous candidate drugs under preclinical or clinical evaluation and several products already approved. However, there are challenges in the development of effective in situ cancer vaccines. For example, inadequate release of tumour antigens from tumour cells limits antigen uptake by immune cells; insufficient antigen processing by antigen-presenting cells restricts the generation of antigen-specific T cell responses; and the suppressive immune microenvironment of the tumour leads to exhaustion and death of effector cells. Rationally designed delivery technologies such as lipid nanoparticles, hydrogels, scaffolds and polymeric nanoparticles are uniquely suited to overcome these challenges through the targeted delivery of therapeutics to tumour cells, immune cells or the extracellular matrix. Here, we discuss delivery technologies that have the potential to reduce various clinical barriers for in situ cancer vaccines. We also provide our perspective on this emerging field that lies at the interface of cancer vaccine biology and delivery technologies.


Subject(s)
Cancer Vaccines , Drug Delivery Systems , Neoplasms , Humans , Cancer Vaccines/administration & dosage , Cancer Vaccines/immunology , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/drug therapy , Drug Delivery Systems/methods , Animals , Nanoparticles , Antigens, Neoplasm/immunology , Tumor Microenvironment/immunology
16.
Nat Biomed Eng ; 8(5): 513-528, 2024 May.
Article in English | MEDLINE | ID: mdl-38378820

ABSTRACT

The broader clinical use of bispecific T cell engagers for inducing anti-tumour toxicity is hindered by their on-target off-tumour toxicity and the associated neurotoxicity and cytokine-release syndrome. Here we show that the off-tumour toxicity of a supramolecular bispecific T cell engager binding to the T cell co-receptor CD3 and to the human epidermal growth factor receptor 2 on breast tumour cells can be halted by disengaging the T cells from the tumour cells via the infusion of the small-molecule drug amantadine, which disassembles the supramolecular aggregate. In mice bearing human epidermal growth factor receptor 2-expressing tumours and with a human immune system, high intravenous doses of such a 'switchable T cell nanoengager' elicited strong tumour-specific adaptive immune responses that prevented tumour relapse, while the infusion of amantadine restricted off-tumour toxicity, cytokine-release syndrome and neurotoxicity. Supramolecular chemistry may be further leveraged to control the anti-tumour activity and off-tumour toxicity of bispecific antibodies.


Subject(s)
Amantadine , Antibodies, Bispecific , CD3 Complex , T-Lymphocytes , Animals , Humans , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/immunology , Mice , CD3 Complex/immunology , Amantadine/pharmacology , Cell Line, Tumor , Female , Receptor, ErbB-2/immunology , Receptor, ErbB-2/metabolism , Breast Neoplasms/immunology , Breast Neoplasms/drug therapy
17.
Adv Mater ; 36(40): e2407525, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39165065

ABSTRACT

Adoptive cell therapy (ACT) has shown great success in the clinic for treating hematologic malignancies. However, solid tumor treatment with ACT monotherapy is still challenging, owing to insufficient expansion and rapid exhaustion of adoptive cells, tumor antigen downregulation/loss, and dense tumor extracellular matrix. Delivery strategies for combination cell therapy have great potential to overcome these hurdles. The delivery of vaccines, immune checkpoint inhibitors, cytokines, chemotherapeutics, and photothermal reagents in combination with adoptive cells, have been shown to improve the expansion/activation, decrease exhaustion, and promote the penetration of adoptive cells in solid tumors. Moreover, the delivery of nucleic acids to engineer immune cells directly in vivo holds promise to overcome many of the hurdles associated with the complex ex vivo cell engineering strategies. Here, these research advance, as well as the opportunities and challenges for integrating delivery technologies into cell therapy s are discussed, and the outlook for these emerging areas are criticlly analyzed.


Subject(s)
Immunotherapy, Adoptive , Neoplasms , Humans , Animals , Immunotherapy, Adoptive/methods , Neoplasms/therapy , Drug Delivery Systems/methods , Cancer Vaccines/administration & dosage , Immune Checkpoint Inhibitors/chemistry , Immune Checkpoint Inhibitors/pharmacology , Cell- and Tissue-Based Therapy/methods , Cytokines/metabolism , Combined Modality Therapy
18.
J Control Release ; 371: 455-469, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38789090

ABSTRACT

The full potential of ionizable lipid nanoparticles (LNPs) as an in vivo nucleic acid delivery platform has not yet been realized given that LNPs primarily accumulate in the liver following systemic administration, limiting their success to liver-centric conditions. The engineering of LNPs with antibody targeting moieties can enable extrahepatic tropism by facilitating site-specific LNP tethering and driving preferential LNP uptake into receptor-expressing cell types via receptor-mediated endocytosis. Obstetric conditions stemming from placental dysfunction, such as preeclampsia, are characterized by overexpression of cellular receptors, including the epidermal growth factor receptor (EGFR), making targeted LNP platforms an exciting potential treatment strategy for placental dysfunction during pregnancy. Herein, an EGFR antibody-conjugated LNP (aEGFR-LNP) platform was developed by engineering LNPs with increasing densities of antibody functionalization. aEGFR-LNPs were screened in vitro in immortalized placental trophoblasts and in vivo in non-pregnant and pregnant mice and compared to non-targeted formulations for extrahepatic, antibody-targeted mRNA LNP delivery to the placenta. Our top performing LNP with an intermediate density of antibody functionalization (1:5 aEGFR-LNP) mediated a âˆ¼twofold increase in mRNA delivery in murine placentas and a âˆ¼twofold increase in LNP uptake in EGFR-expressing trophoblasts compared to non-targeted counterparts. These results demonstrate the potential of antibody-conjugated LNPs for achieving extrahepatic tropism, and the ability of aEGFR-LNPs in promoting mRNA delivery to EGFR-expressing cell types in the placenta.


Subject(s)
ErbB Receptors , Lipids , Nanoparticles , Placenta , RNA, Messenger , Female , Animals , ErbB Receptors/metabolism , Pregnancy , Placenta/metabolism , Nanoparticles/chemistry , RNA, Messenger/administration & dosage , Lipids/chemistry , Humans , Mice , Trophoblasts/metabolism , Liposomes
19.
J Control Release ; 370: 614-625, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729436

ABSTRACT

Mutations in RAS, a family of proteins found in all human cells, drive a third of cancers, including many pancreatic, colorectal, and lung cancers. However, there is a lack of clinical therapies that can effectively prevent RAS from causing tumor growth. Recently, a protease was engineered that specifically degrades active RAS, offering a promising new tool for treating these cancers. However, like many other intracellularly acting protein-based therapies, this protease requires a delivery vector to reach its site of action within the cell. In this study, we explored the incorporation of cationic lipids into ionizable lipid nanoparticles (LNPs) to develop a RAS protease delivery platform capable of inhibiting cancer cell proliferation in vitro and in vivo. A library of 13 LNPs encapsulating RAS protease was designed, and each formulation was evaluated for in vitro delivery efficiency and toxicity. A subset of four top-performing LNP formulations was identified and further evaluated for their impact on cancer cell proliferation in human colorectal cancer cells with mutated KRAS in vitro and in vivo, as well as their in vivo biodistribution and toxicity. In vivo, both the concentration of cationic lipid and type of cargo influenced LNP and cargo distribution. All lead candidate LNPs showed RAS protease functionality in vitro, and the top-performing formulation achieved effective intracellular RAS protease delivery in vivo, decreasing cancer cell proliferation in an in vivo xenograft model and significantly reducing tumor growth and size. Overall, this work demonstrates the use of LNPs as an effective delivery platform for RAS proteases, which could potentially be utilized for cancer therapies.


Subject(s)
Cell Proliferation , Lipids , Nanoparticles , Humans , Animals , Cell Proliferation/drug effects , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Lipids/chemistry , Cell Line, Tumor , Mice, Nude , Female , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , ras Proteins/metabolism , Tissue Distribution , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Neoplasms/drug therapy , Neoplasms/pathology , Mice , Drug Delivery Systems
20.
Theranostics ; 14(1): 1-16, 2024.
Article in English | MEDLINE | ID: mdl-38164140

ABSTRACT

Lipid nanoparticles (LNPs) have emerged as a viable, clinically-validated platform for the delivery of mRNA therapeutics. LNPs have been utilized as mRNA delivery systems for applications including vaccines, gene therapy, and cancer immunotherapy. However, LNPs, which are typically composed of ionizable lipids, cholesterol, helper lipids, and lipid-anchored polyethylene glycol, often traffic to the liver which limits the therapeutic potential of the platform. Several approaches have been proposed to resolve this tropism such as post-synthesis surface modification or the addition of synthetic cationic lipids. Methods: Here, we present a strategy for achieving extrahepatic delivery of mRNA involving the incorporation of bile acids, a naturally-occurring class of cholesterol analogs, during LNP synthesis. We synthesized a series of bile acid-containing C14-4 LNPs by replacing cholesterol with bile acids (cholic acid, chenodeoxycholic acid, deoxycholic acid, or lithocholic acid) at various ratios. Results: Bile acid-containing LNPs (BA-LNPs) were able to reduce delivery to liver cells in vitro and improve delivery in a variety of other cell types, including T cells, B cells, and epithelial cells. Our subsequent in vivo screening of selected LNP candidates injected intraperitoneally or intravenously identified a highly spleen tropic BA-LNP: CA-100, a four-component LNP containing cholic acid and no cholesterol. These screens also identified BA-LNP candidates demonstrating promise for other mRNA therapeutic applications such as for gastrointestinal or immune cell delivery. We further found that the substitution of cholic acid for cholesterol in an LNP formulation utilizing a different ionizable lipid, C12-200, also shifted mRNA delivery from the liver to the spleen, suggesting that this cholic acid replacement strategy may be generalizable. Conclusion: These results demonstrate the potential of a four-component BA-LNP formulation, CA-100, for extrahepatic mRNA delivery that could potentially be utilized for a range of therapeutic and vaccine applications.


Subject(s)
Bile Acids and Salts , Nanoparticles , RNA, Messenger/metabolism , Lipids , Cholesterol , Cholic Acids , RNA, Small Interfering/genetics
SELECTION OF CITATIONS
SEARCH DETAIL