Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Nature ; 594(7861): 94-99, 2021 06.
Article in English | MEDLINE | ID: mdl-34012116

ABSTRACT

Inflammation is a defence response to tissue damage that requires tight regulation in order to prevent impaired healing. Tissue-resident macrophages have a key role in tissue repair1, but the precise molecular mechanisms that regulate the balance between inflammatory and pro-repair macrophage responses during healing remain poorly understood. Here we demonstrate a major role for sensory neurons in promoting the tissue-repair function of macrophages. In a sunburn-like model of skin damage in mice, the conditional ablation of sensory neurons expressing the Gαi-interacting protein (GINIP) results in defective tissue regeneration and in dermal fibrosis. Elucidation of the underlying molecular mechanisms revealed a crucial role for the neuropeptide TAFA4, which is produced in the skin by C-low threshold mechanoreceptors-a subset of GINIP+ neurons. TAFA4 modulates the inflammatory profile of macrophages directly in vitro. In vivo studies in Tafa4-deficient mice revealed that TAFA4 promotes the production of IL-10 by dermal macrophages after UV-induced skin damage. This TAFA4-IL-10 axis also ensures the survival and maintenance of IL-10+TIM4+ dermal macrophages, reducing skin inflammation and promoting tissue regeneration. These results reveal a neuroimmune regulatory pathway driven by the neuropeptide TAFA4 that promotes the anti-inflammatory functions of macrophages and prevents fibrosis after tissue damage, and could lead to new therapeutic perspectives for inflammatory diseases.


Subject(s)
Cytokines/metabolism , Macrophages/metabolism , Regeneration , Sensory Receptor Cells/metabolism , Wound Healing , Animals , Cell Survival , Cytokines/deficiency , Disease Models, Animal , Female , Fibrosis/etiology , Fibrosis/metabolism , Fibrosis/pathology , Fibrosis/prevention & control , Inflammation/etiology , Inflammation/metabolism , Inflammation/pathology , Inflammation/prevention & control , Interleukin-10/biosynthesis , Interleukin-10/metabolism , Macrophages/radiation effects , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Sensory Receptor Cells/radiation effects , Skin/pathology , Skin/radiation effects , Sunburn/complications , Sunburn/etiology , Sunburn/metabolism , Sunburn/pathology , Ultraviolet Rays/adverse effects
2.
PLoS Pathog ; 17(2): e1009367, 2021 02.
Article in English | MEDLINE | ID: mdl-33617602

ABSTRACT

Genotype 3 Hepatitis E virus (HEV-3) is an emerging threat for aging population. More than one third of older infected patients develops clinical symptoms with severe liver damage, while others remain asymptomatic. The origin of this discrepancy is still elusive although HEV-3 pathogenesis appears to be immune-mediated. Therefore, we investigated the role of CD8 T cells in the outcome of the infection in immunocompetent elderly subjects. We enrolled twenty two HEV-3-infected patients displaying similar viral determinants and fifteen healthy donors. Among the infected group, sixteen patients experienced clinical symptoms related to liver disease while six remained asymptomatic. Here we report that symptomatic infection is characterized by an expansion of highly activated effector memory CD8 T (EM) cells, regardless of antigen specificity. This robust activation is associated with key features of early T cell exhaustion including a loss in polyfunctional type-1 cytokine production and partial commitment to type-2 cells. In addition, we show that bystander activation of EM cells seems to be dependent on the inflammatory cytokines IL-15 and IL-18, and is supported by an upregulation of the activating receptor NKG2D and an exuberant expression of T-Bet and T-Bet-regulated genes including granzyme B and CXCR3. We also show that the inflammatory chemokines CXCL9-10 are increased in symptomatic patients thereby fostering the recruitment of highly cytotoxic EM cells into the liver in a CXCR3-dependent manner. Finally, we find that the EM-biased immune response returns to homeostasis following viral clearance and disease resolution, further linking the EM cells response to viral burden. Conversely, asymptomatic patients are endowed with low-to-moderate EM cell response. In summary, our findings define immune correlates that contribute to HEV-3 pathogenesis and emphasize the central role of EM cells in governing the outcome of the infection.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Hepatitis E virus/classification , Hepatitis E/pathology , Immunologic Memory/immunology , Receptors, CXCR3/metabolism , Aged , Case-Control Studies , Cytokines/metabolism , Female , Genotype , Hepatitis E/immunology , Hepatitis E/virology , Hepatitis E virus/genetics , Hepatitis E virus/immunology , Humans , Male , Middle Aged
3.
Emerg Infect Dis ; 25(4): 823-825, 2019 04.
Article in English | MEDLINE | ID: mdl-30882325

ABSTRACT

We assessed Zika virus RNA and select cytokine levels in semen, blood, and plasma samples from an infected patient in South America. Viral RNA was detected in semen >2 months after viremia clearance; cytokine profiles differed in semen and plasma. After viremia, Zika virus appears to become compartmentalized in the male reproductive tract.


Subject(s)
Cytokines/metabolism , Semen/metabolism , Zika Virus Infection/metabolism , Zika Virus Infection/virology , Zika Virus , Biomarkers , Cytokines/blood , Host-Pathogen Interactions , Humans , Zika Virus Infection/blood
4.
Virologie (Montrouge) ; 22(5): 239-250, 2018 10 01.
Article in French | MEDLINE | ID: mdl-33111685

ABSTRACT

Hepatitis E virus (HEV) presents a worldwide distribution. In developing countries, hepatitis E, related to HEV1 and HEV2, is a waterborne disease. In developed countries, hepatitis E is a zoonotic disease due to HEV3 and HEV4. It is mainly transmitted through meat consumption from animal reservoirs such as pig, boar, deer and rabbit. New clinical forms include neurological manifestations that are now clearly associated with HEV3 infection. Recent studies showed that ORF1 polyprotein was able to disrupt the innate immune response. It was also shown that ORF2 protein exists at least in two forms: a free, glycosylated form and a non-glycosylated form, which assembles to form the capsid. Lastly, it was shown that ORF3 protein, involved in the virus egress, acts as a viroporin. New culture systems and animal models have been developed recently, and will be very helpful to complete our understanding of HEV life cycle and pathogenesis.

5.
Front Immunol ; 13: 1000861, 2022.
Article in English | MEDLINE | ID: mdl-36483552

ABSTRACT

Unlike other Flaviviruses, Zika virus (ZIKV) infection during the first trimester of pregnancy causes severe pregnancy outcomes including the devastating microcephaly and diseases associated with placental dysfunctions. We have previously reported that the maternal decidua basalis, the major maternal-fetal interface, serves as a replication platform enabling virus amplification before dissemination to the fetal compartment. However, the rate of congenital infection is quite low, suggesting the presence of a natural barrier against viral infection. Using primary cells from first-trimester pregnancy samples, we investigated in this study how the maternal decidua can interfere with ZIKV infection. Our study reveals that whether through their interactions with dNK cells, the main immune cell population of the first-trimester decidua, or their production of proinflammatory cytokines, decidual stromal cells (DSCs) are the main regulators of ZIKV infection during pregnancy. We also validate the functional role of AXL as a crucial receptor for ZIKV entry in DSCs and demonstrate that targeted inhibition of ligand-receptor interaction at the early stage of the infection is effective in drastically reducing virus pathogenesis at the maternal-fetal interface. Collectively, our results provide insights into the mechanisms through which ZIKV infection and spreading can be limited. The strategy of circumventing viral entry at the maternal-fetus interface limits virus dissemination to fetal tissues, thereby preventing congenital abnormalities.


Subject(s)
Zika Virus Infection , Zika Virus , Pregnancy , Female , Humans , Placenta
6.
Nat Commun ; 12(1): 2936, 2021 05 18.
Article in English | MEDLINE | ID: mdl-34006861

ABSTRACT

Host protection against cutaneous herpes simplex virus 1 (HSV-1) infection relies on the induction of a robust adaptive immune response. Here, we show that Nav1.8+ sensory neurons, which are involved in pain perception, control the magnitude of CD8 T cell priming and expansion in HSV-1-infected mice. The ablation of Nav1.8-expressing sensory neurons is associated with extensive skin lesions characterized by enhanced inflammatory cytokine and chemokine production. Mechanistically, Nav1.8+ sensory neurons are required for the downregulation of neutrophil infiltration in the skin after viral clearance to limit the severity of tissue damage and restore skin homeostasis, as well as for eliciting robust CD8 T cell priming in skin-draining lymph nodes by controlling dendritic cell responses. Collectively, our data reveal an important role for the sensory nervous system in regulating both innate and adaptive immune responses to viral infection, thereby opening up possibilities for new therapeutic strategies.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Herpes Simplex/immunology , Herpesvirus 1, Human/immunology , Nociceptive Pain/immunology , Sensory Receptor Cells/immunology , Animals , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/virology , Cytokines/immunology , Cytokines/metabolism , Female , Herpes Simplex/genetics , Herpes Simplex/virology , Herpesvirus 1, Human/physiology , Humans , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , NAV1.8 Voltage-Gated Sodium Channel/genetics , NAV1.8 Voltage-Gated Sodium Channel/immunology , NAV1.8 Voltage-Gated Sodium Channel/metabolism , Neutrophil Infiltration/immunology , Nociceptive Pain/genetics , Nociceptive Pain/metabolism , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/virology , Skin/immunology , Skin/metabolism , Skin/virology
7.
Nat Commun ; 11(1): 2967, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32528049

ABSTRACT

The recent outbreak of Zika virus (ZIKV) was associated with birth defects and pregnancy loss when maternal infection occurs in early pregnancy, but specific mechanisms driving placental insufficiency and subsequent ZIKV-mediated pathogenesis remain unclear. Here we show, using large scale metabolomics, that ZIKV infection reprograms placental lipidome by impairing the lipogenesis pathways. ZIKV-induced metabolic alterations provide building blocks for lipid droplet biogenesis and intracellular membrane rearrangements to support viral replication. Furthermore, lipidome reprogramming by ZIKV is paralleled by the mitochondrial dysfunction and inflammatory immune imbalance, which contribute to placental damage. In addition, we demonstrate the efficacy of a commercially available inhibitor in limiting ZIKV infection, provides a proof-of-concept for blocking congenital infection by targeting metabolic pathways. Collectively, our study provides mechanistic insights on how ZIKV targets essential hubs of the lipid metabolism that may lead to placental dysfunction and loss of barrier function.


Subject(s)
Placenta/virology , Zika Virus Infection/immunology , Zika Virus Infection/metabolism , Female , Humans , Infectious Disease Transmission, Vertical , Lipidomics/methods , Pregnancy , Pregnancy Complications, Infectious/immunology , Pregnancy Complications, Infectious/metabolism , Zika Virus/immunology , Zika Virus/pathogenicity
8.
Nat Commun ; 9(1): 4748, 2018 11 12.
Article in English | MEDLINE | ID: mdl-30420629

ABSTRACT

Hepatitis E virus (HEV) infection, particularly HEV genotype 1 (HEV-1), can result in fulminant hepatic failure and severe placental diseases, but mechanisms underlying genotype-specific pathogenicity are unclear and appropriate models are lacking. Here, we model HEV-1 infection ex vivo at the maternal-fetal interface using the decidua basalis and fetal placenta, and compare its effects to the less-pathogenic genotype 3 (HEV-3). We demonstrate that HEV-1 replicates more efficiently than HEV-3 both in tissue explants and stromal cells, produces more infectious progeny virions and causes severe tissue alterations. HEV-1 infection dysregulates the secretion of several soluble factors. These alterations to the cytokine microenvironment correlate with viral load and contribute to the tissue damage. Collectively, this study characterizes an ex vivo model for HEV infection and provides insights into HEV-1 pathogenesis during pregnancy that are linked to high viral replication, alteration of the local secretome and induction of tissue injuries.


Subject(s)
Hepatitis E virus/genetics , Hepatitis E virus/pathogenicity , Maternal-Fetal Exchange/physiology , Cells, Cultured , Decidua/pathology , Decidua/virology , Female , Genotype , Humans , Interferons/metabolism , Pregnancy , Stromal Cells/metabolism , Virus Replication , Interferon Lambda
9.
Sci Rep ; 6: 35296, 2016 10 19.
Article in English | MEDLINE | ID: mdl-27759009

ABSTRACT

The outbreak of the Zika Virus (ZIKV) and its association with fetal abnormalities have raised worldwide concern. However, the cellular tropism and the mechanisms of ZIKV transmission to the fetus during early pregnancy are still largely unknown. Therefore, we ex vivo modeled the ZIKV transmission at the maternal-fetal interface using organ culture from first trimester pregnancy samples. Here, we provide evidence that ZIKV strain circulating in Brazil infects and damages tissue architecture of the maternal decidua basalis, the fetal placenta and umbilical cord. We also show that ZIKV replicates differentially in a wide range of maternal and fetal cells, including decidual fibroblasts and macrophages, trophoblasts, Hofbauer cells as well as umbilical cord mesenchymal stem cells. The striking cellular tropism of ZIKV and its cytopathic-induced tissue injury during the first trimester of pregnancy could provide an explanation for the irreversible congenital damages.


Subject(s)
Placenta/virology , Viral Tropism/genetics , Zika Virus Infection/transmission , Zika Virus/genetics , Adolescent , Adult , Brazil , Female , Humans , Maternal-Fetal Relations , Placenta/pathology , Pregnancy , Pregnancy Trimester, First/genetics , Zika Virus/pathogenicity , Zika Virus Infection/virology
10.
Nat Commun ; 6: 10183, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26666685

ABSTRACT

The natural cytotoxicity receptors NKp46/NCR1, NKp44/NCR2 and NKp30/NCR3 are critical for natural killer (NK) cell functions. Their genes are transcribed into several splice variants whose physiological relevance is not yet fully understood. Here we report that decidua basalis NK (dNK) cells of the pregnant uterine mucosa and peripheral blood NK (pNK) cells, two functionally distinct subsets of the physiological NK cell pool, display differential expression of NKp30/NCR3 and NKp44/NCR2 splice variants. The presence of cytokines that are enriched within the decidual microenvironment is sufficient to convert the splice variant profile of pNK cells into one similar to that of dNK cells. This switch is associated with decreased cytotoxic function and major adaptations to the secretome, hallmarks of the decidual phenotype. Thus, NKp30/NCR3 and NKp44/NCR2 splice variants delineate functionally distinct NK cell subsets. To our knowledge, this is the first conclusive evidence underlining the physiological importance of NCR splice variants.


Subject(s)
Gene Expression Regulation/physiology , Killer Cells, Natural/classification , Protein Isoforms/metabolism , Receptors, Natural Cytotoxicity Triggering/metabolism , Adolescent , Adult , Cytokines/genetics , Cytokines/metabolism , Decidua/cytology , Female , Humans , Killer Cells, Natural/physiology , Pregnancy , Protein Isoforms/genetics , Receptors, Natural Cytotoxicity Triggering/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL