Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Saudi Pharm J ; 30(10): 1387-1395, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36387339

ABSTRACT

Muscular atrophy (MA) is a disease of various origins, i.e., genetic or the most common, caused by mechanical injury. So far, there is no universal therapeutic model because this disease is often progressive with numerous manifested symptoms. Moreover, there is no safe and low-risk therapy dedicated to muscle atrophy. For this reason, our research focuses on finding an alternative method using natural compounds to treat MA. This study proposes implementing natural substances such as celastrol and Rhynchophylline on the cellular level, using a simulated and controlled atrophy process. Methods: Celastrol and Rhynchophylline were used as natural compounds against simulated atrophy in C2C12 cells. Skeletal muscle C2C12 cells were stimulated for the differentiation process. Atrophic conditions were obtained by the exposure to the low concertation of doxorubicin and validated by FoxO3 and MAFbx. The protective and regenerative effect of drugs on cell proliferation was determined by the MTT assay and MT-CO1, VDAC1, and prohibitin expression. Results: The obtained results revealed that both natural substances reduced atrophic symptoms. Rhynchophylline and celastrol attenuated atrophic cells in the viability studies, morphology analysis by diameter measurements, modulated prohibitin VDAC, and MT-CO1 expression. Conclusions: The obtained results revealed that celastrol and Rhynchophylline could be effectively used as a supportive treatment in atrophy-related disorders. Thus, natural drugs seem promising for muscle regeneration.

2.
Mar Drugs ; 18(12)2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33255899

ABSTRACT

Chitosans represent a group of multifunctional drug excipients. Here, we aimed to estimate the impact of high-molecular weight chitosan on the physicochemical properties of clotrimazole-chitosan solid mixtures (CL-CH), prepared by grinding and kneading methods. We characterised these formulas by infrared spectroscopy, differential scanning calorimetry, and powder X-ray diffractometry, and performed in vitro clotrimazole dissolution tests. Additionally, we examined the antifungal activity of clotrimazole-chitosan mixtures against clinical Candida isolates under neutral and acid conditions. The synergistic effect of clotrimazole and chitosan S combinations was observed in tests carried out at pH 4 on Candida glabrata strains. The inhibition of C. glabrata growth reached at least 90%, regardless of the drug/excipient weight ratio, and even at half of the minimal inhibitory concentrations of clotrimazole. Our results demonstrate that clotrimazole and high-molecular weight chitosan could be an effective combination in a topical antifungal formulation, as chitosan acts synergistically with clotrimazole against non-albicans candida strains.


Subject(s)
Antifungal Agents/pharmacology , Candida glabrata/drug effects , Chitosan/pharmacology , Clotrimazole/pharmacology , Excipients/pharmacology , Antifungal Agents/chemistry , Candida albicans/drug effects , Candida albicans/growth & development , Candida glabrata/growth & development , Chitosan/chemistry , Clotrimazole/chemistry , Dose-Response Relationship, Drug , Drug Compounding , Drug Liberation , Drug Synergism , Excipients/chemistry , Hydrogen-Ion Concentration , Microbial Sensitivity Tests , Molecular Weight , Powders , Solubility
3.
Acta Pol Pharm ; 63(6): 515-20, 2006.
Article in English | MEDLINE | ID: mdl-17438869

ABSTRACT

Adsorption of sodium diclofenac was investigated in the presence of sucralfate--a cytoprotective agent preventing gastropathy, adverse effect of diclofenac. Evaluation of adsorption was performed by means of a static method in vitro taking into account pH of the environment, temperature, concentration of the investigated agents and the form of sucralfate. Findings obtained prove that sodium diclofenac is adsorbed on sucralfate in all investigated pH ranges and the capability of sucralfate binding depends on its form, temperature and environmental pH. The highest binding was observed at pH 5.0 in the presence of sucralfate, which at this pH has the form of a suspension, while the lowest--at pH 1.5 in the presence of sucralfate in the form of paste. Low values of adsorption temperature of diclofenac as well as the relationship between the level of its adsorption and environmental pH are the dominating factors pointing to the physical and exothermic adsorption.


Subject(s)
Diclofenac/chemistry , Sucralfate/chemistry , Adsorption , Diclofenac/analysis , Drug Interactions , Hydrogen-Ion Concentration , Temperature
4.
Acta Pol Pharm ; 62(1): 69-73, 2005.
Article in English | MEDLINE | ID: mdl-16022497

ABSTRACT

Adsorbance of certain prokinetic drugs, regulating the motility of the digestive tract, on a cytoprotective drug--sucralfate was investigated. The evaluation of adsorbance capability was carried out by means of a statistical method in in vitro conditions, taking into account environmental pH, concentration of the investigated drugs as well as the form of sucralfate. Obtained results prove that the analyzed active agents are adsorbed on sucralfate at all the investigated pH ranges and the capability of sucralfate binding depends on its form and environmental pH. The highest binding capability was revealed by samples with pH = 3.6 in the presence of sucralfate in the form of suspension, while the lowest binding capability was observed at pH = 1.5 in the presence of sucralfate in the form of paste. The adsorbance capacity of sucralfate (k) at pH = 3.6 is the highest for cisaprid (k = 8.5) and it is significantly lower for metoclopramide (k = 1.5)


Subject(s)
Anti-Ulcer Agents/chemistry , Gastrointestinal Agents/chemistry , Sucralfate/chemistry , Adsorption , Antiemetics/chemistry , Cisapride/chemistry , Hydrogen-Ion Concentration , Metoclopramide/chemistry , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL