Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Am J Respir Cell Mol Biol ; 70(6): 457-467, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38346220

ABSTRACT

Sepsis is a systemic inflammatory response that requires effective macrophage metabolic functions to resolve ongoing inflammation. Previous work showed that the mechanosensitive cation channel, transient receptor potential vanilloid 4 (TRPV4), mediates macrophage phagocytosis and cytokine production in response to lung infection. Here, we show that TRPV4 regulates glycolysis in a stiffness-dependent manner by augmenting macrophage glucose uptake by GLUT1. In addition, TRPV4 is required for LPS-induced phagolysosome maturation in a GLUT1-dependent manner. In a cecal slurry mouse model of sepsis, TRPV4 regulates sepsis-induced glycolysis as measured by BAL fluid (BALF) lactate and sepsis-induced lung injury as measured by BALF total protein and lung compliance. TRPV4 is necessary for bacterial clearance in the peritoneum to limit sepsis-induced lung injury. It is interesting that BALF lactate is increased in patients with sepsis compared with healthy control participants, supporting the relevance of lung cell glycolysis to human sepsis. These data show that macrophage TRPV4 is required for glucose uptake through GLUT1 for effective phagolysosome maturation to limit sepsis-induced lung injury. Our work presents TRPV4 as a potential target to protect the lung from injury in sepsis.


Subject(s)
Glucose Transporter Type 1 , Glycolysis , Lung Injury , Macrophages , Sepsis , TRPV Cation Channels , Animals , TRPV Cation Channels/metabolism , Sepsis/metabolism , Sepsis/complications , Glucose Transporter Type 1/metabolism , Glucose Transporter Type 1/genetics , Mice , Lung Injury/metabolism , Macrophages/metabolism , Mice, Inbred C57BL , Humans , Male , Glucose/metabolism , Phagosomes/metabolism , Bronchoalveolar Lavage Fluid , Lipopolysaccharides/pharmacology , Phagocytosis , Disease Models, Animal , Lung/metabolism , Lung/pathology , Lung/immunology
2.
Emerg Infect Dis ; 29(5)2023 05.
Article in English | MEDLINE | ID: mdl-37080963

ABSTRACT

Clindamycin and ß-lactam antibiotics have been mainstays for treating invasive group A Streptococcus (iGAS) infection, yet such regimens might be limited for strains displaying MLSB phenotypes. We investigated 76 iGAS isolates from 66 patients in West Virginia, USA, during 2020-2021. We performed emm typing using Centers for Disease Control and Prevention guidelines and assessed resistance both genotypically and phenotypically. Median patient age was 42 (range 23-86) years. We found 76% of isolates were simultaneously resistant to erythromycin and clindamycin, including all emm92 and emm11 isolates. Macrolide resistance was conferred by the plasmid-borne ermT gene in all emm92 isolates and by chromosomally encoded ermA, ermB, and a single mefA in other emm types. Macrolide-resistant iGAS isolates were typically resistant to tetracycline and aminoglycosides. Vulnerability to infection was associated with socioeconomic status. Our results show a predominance of macrolide-resistant isolates and a shift in emm type distribution compared with historical reports.


Subject(s)
Erythromycin , Streptococcal Infections , Humans , Erythromycin/pharmacology , Anti-Bacterial Agents/pharmacology , Clindamycin , Macrolides , West Virginia/epidemiology , Drug Resistance, Bacterial/genetics , Microbial Sensitivity Tests , Streptococcal Infections/epidemiology , Streptococcus pyogenes/genetics , Phenotype
3.
Ann Am Thorac Soc ; 21(9): 1316-1325, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38843487

ABSTRACT

Rationale: Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide. Our previous studies have identified that nocturnal hypoxemia causes skeletal muscle loss (i.e., sarcopenia) in in vitro models of COPD. Objectives: We aimed to extend our preclinical mechanistic findings by analyzing a large sleep registry to determine whether nocturnal hypoxemia is associated with sarcopenia in patients with COPD. Methods: Sleep studies from patients with COPD (n = 479) and control subjects without COPD (n = 275) were analyzed. Patients with obstructive sleep apnea, as defined by apnea-hypopnea index ⩾ 5, were excluded. Pectoralis muscle cross-sectional area (PMcsa) was quantified using computed tomography scans performed within 1 year of the sleep study. We defined sarcopenia as less than the lowest 20% residuals for PMcsa of control subjects, which was adjusted for age and body mass index (BMI) and stratified by sex. Youden's optimal cut-point criteria were used to predict sarcopenia based on mean oxygen saturation during sleep. Additional measures of nocturnal hypoxemia were analyzed. The pectoralis muscle index (PMI) was defined as PMcsa normalized to BMI. Results: On average, males with COPD had a 16.6% lower PMI than control males (1.41 ± 0.44 vs. 1.69 ± 0.56 cm2/BMI; P < 0.001), whereas females with COPD had a 9.4% lower PMI than control females (0.96 ± 0.27 vs. 1.06 ± 0.33 cm2/BMI; P < 0.001). Males with COPD with nocturnal hypoxemia had a 9.5% decrease in PMI versus COPD with normal O2 (1.33 ± 0.39 vs. 1.47 ± 0.46 cm2/BMI; P < 0.05) and a 23.6% decrease compared with control subjects (1.33 ± 0.39 vs. 1.74 ± 0.56 cm2/BMI; P < 0.001). Females with COPD with nocturnal hypoxemia had an 11.2% decrease versus COPD with normal O2 (0.87 ± 0.26 vs. 0.98 ± 0.28 cm2/BMI; P < 0.05) and a 17.9% decrease compared with control subjects (0.87 ± 0.26 vs. 1.06 ± 0.33 cm2/BMI; P < 0.001). These findings were largely replicated using multiple measures of nocturnal hypoxemia. Conclusions: We defined sarcopenia in the pectoralis muscle using residuals that take into account age, BMI, and sex. We found that patients with COPD have a lower PMI than patients without COPD and that nocturnal hypoxemia was associated with an additional decrease in the PMI of patients with COPD. Additional prospective analyses are needed to determine a protective threshold of oxygen saturation to prevent or reverse sarcopenia due to nocturnal hypoxemia in COPD.


Subject(s)
Hypoxia , Pulmonary Disease, Chronic Obstructive , Sarcopenia , Tomography, X-Ray Computed , Humans , Sarcopenia/complications , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/physiopathology , Male , Female , Hypoxia/etiology , Hypoxia/complications , Aged , Middle Aged , Polysomnography , Pectoralis Muscles/diagnostic imaging , Case-Control Studies , Body Mass Index , Registries
4.
Front Immunol ; 14: 1177650, 2023.
Article in English | MEDLINE | ID: mdl-37545515

ABSTRACT

Burkholderia pseudomallei is a gram-negative bacterium that is the etiological agent of the tropical disease melioidosis. Currently, there is no licensed vaccine for melioidosis, but numerous candidates are being tested for protective efficacy and characterization of the elicited immune response. Our lab has previously reported the immunogenicity of a Bucl8-protein-based peptide antigen, designated L1-CRM197 (Cross-reacting material 197). When given subcutaneously, this vaccine formulation promoted a strong Th2 (IgG1) antibody response, however immunization did not protect from death. In this study, we hypothesized that an intranasally administered L1-CRM197 vaccine would induce protective mucosal immunity. To evaluate vaccine efficacy, we developed a surrogate Burkholderia infection model that employs outbred CD-1 mice which imitates the immunogenetic diversity of humans. Mice were immunized with either L1-CRM197 adjuvanted with fluorinated cyclic diguanosine monophosphate (FCDG) or with FCDG-only control. These mice were then challenged intranasally with an infectious dose of a luminescent strain of B. thailandensis E264 two weeks post-immunization, and correlates of protection were assessed in euthanized mice on days 1, 2, 3, and 7 post-infection. Overall, intranasal vaccination, compared to subcutaneous administration, induced a stronger Th1 (IgG2a/2b) to Th2 (IgG1) antibody response and promoted anti-L1 nasal, pulmonary, and systemic IgA. Additionally, sera IgG from L1-CRM197-vaccinated mice recognized whole-cell B. thailandensis and B. pseudomallei, a select agent exempt strain Bp82. Vaccination ameliorated disease indicators, including luminescent signal and bacterial cell counts, weight and temperature loss, and organ weight, which negatively correlated with IgG2a antibody levels and mucosa-stimulating cytokines IL-13 and IL-9. L1-CRM197-vaccinated mice also had earlier resolution of inflammatory and tissue-damaging cytokines compared to the FCDG-only controls. These results suggest a balanced humoral and cell-mediated response, along with mucosa-based immunity are beneficial for protection. Future efforts should further assess mucosal cellular and humoral mechanisms of protection and test such protection, using aerosolized B. pseudomallei select agent strain(s).


Subject(s)
Melioidosis , Humans , Animals , Mice , Immunoglobulin G , Bacterial Vaccines , Antibodies, Bacterial , Vaccination , Immunization , Inflammation
5.
Cells ; 10(3)2021 02 25.
Article in English | MEDLINE | ID: mdl-33668922

ABSTRACT

Increasing antimicrobial resistance due to misuse and overuse of antimicrobials, as well as a lack of new and innovative antibiotics in development has become an alarming global threat. Preventative therapeutics, like vaccines, are combative measures that aim to stop infections at the source, thereby decreasing the overall use of antibiotics. Infections due to Gram-negative pathogens pose a significant treatment challenge because of substantial multidrug resistance that is acquired and spread throughout the bacterial population. Burkholderia spp. are Gram-negative intrinsically resistant bacteria that are responsible for environmental and nosocomial infections. The Burkholderia cepacia complex are respiratory pathogens that primarily infect immunocompromised and cystic fibrosis patients, and are acquired through contaminated products and equipment, or via patient-to-patient transmission. The Burkholderia pseudomallei complex causes percutaneous wound, cardiovascular, and respiratory infections. Transmission occurs through direct exposure to contaminated water, water-vapors, or soil, leading to the human disease melioidosis, or the equine disease glanders. Currently there is no licensed vaccine against any Burkholderia pathogen. This review will discuss Burkholderia vaccine candidates derived from outer membrane proteins, OmpA, OmpW, Omp85, and Bucl8, encompassing their structures, conservation, and vaccine formulation.


Subject(s)
Bacterial Vaccines/immunology , Burkholderia/immunology , Membrane Proteins/immunology , Amino Acid Sequence , Animals , Antigens, Bacterial/immunology , Humans , Membrane Proteins/chemistry , Models, Biological
6.
Vaccines (Basel) ; 9(11)2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34835150

ABSTRACT

Burkholderia pseudomallei is an infectious bacterium of clinical and biodefense concern, and is the causative agent of melioidosis. The mortality rate can reach up to 50% and affects 165,000 people per year; however, there is currently no vaccine available. In this study, we examine the antigen-specific immune response to a vaccine formulated with antigens derived from an outer membrane protein in B. pseudomallei, Bucl8. Here, we employed a number of bioinformatic tools to predict Bucl8-derived epitopes that are non-allergenic and non-toxic, but would elicit an immune response. From these data, we formulated a vaccine based on two extracellular components of Bucl8, the ß-barrel loops and extended collagen and non-collagen domains. Outbred CD-1 mice were immunized with vaccine formulations-composed of recombinant proteins or conjugated synthetic peptides with adjuvant-to assess the antigen-specific immune responses in mouse sera and lymphoid organs. We found that mice vaccinated with either Bucl8-derived components generated a robust TH2-skewed antibody response when antigen was combined with the adjuvant AddaVax, while the TH1 response was limited. Mice immunized with synthetic loop peptides had a stronger, more consistent antibody response than recombinant protein antigens, based on higher IgG titers and recognition of bacteria. We then compared peptide-based vaccines in an established C57BL/6 inbred mouse model and observed a similar TH2-skewed response. The resulting formulations will be applied in future studies examining the protection of Bucl8-derived vaccines.

7.
PLoS One ; 15(11): e0242593, 2020.
Article in English | MEDLINE | ID: mdl-33227031

ABSTRACT

Bacterial efflux pumps are an important pathogenicity trait because they extrude a variety of xenobiotics. Our laboratory previously identified in silico Burkholderia collagen-like protein 8 (Bucl8) in the hazardous pathogens Burkholderia pseudomallei and Burkholderia mallei. We hypothesize that Bucl8, which contains two predicted tandem outer membrane efflux pump domains, is a component of a putative efflux pump. Unique to Bucl8, as compared to other outer membrane proteins, is the presence of an extended extracellular region containing a collagen-like (CL) domain and a non-collagenous C-terminus (Ct). Molecular modeling and circular dichroism spectroscopy with a recombinant protein, corresponding to this extracellular CL-Ct portion of Bucl8, demonstrated that it adopts a collagen triple helix, whereas functional assays screening for Bucl8 ligands identified binding to fibrinogen. Bioinformatic analysis of the bucl8 gene locus revealed it resembles a classical efflux-pump operon. The bucl8 gene is co-localized with downstream fusCDE genes encoding fusaric acid (FA) resistance, and with an upstream gene, designated as fusR, encoding a LysR-type transcriptional regulator. Using reverse transcriptase (RT)-qPCR, we defined the boundaries and transcriptional organization of the fusR-bucl8-fusCDE operon. We found exogenous FA induced bucl8 transcription over 80-fold in B. pseudomallei, while deletion of the entire bucl8 locus decreased the minimum inhibitory concentration of FA 4-fold in its isogenic mutant. We furthermore showed that the putative Bucl8-associated pump expressed in the heterologous Escherichia coli host confers FA resistance. On the contrary, the Bucl8-associated pump did not confer resistance to a panel of clinically-relevant antimicrobials in Burkholderia and E. coli. We finally demonstrated that deletion of the bucl8-locus drastically affects the growth of the mutant in L-broth. We determined that Bucl8 is a component of a novel tetrapartite efflux pump, which confers FA resistance, fibrinogen binding, and optimal growth.


Subject(s)
Burkholderia mallei/metabolism , Burkholderia pseudomallei/metabolism , Membrane Transport Proteins/metabolism , Bacterial Outer Membrane Proteins/metabolism , Bacterial Outer Membrane Proteins/physiology , Burkholderia/genetics , Burkholderia/metabolism , Burkholderia mallei/genetics , Burkholderia pseudomallei/genetics , Collagen/metabolism , Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Genes, Bacterial/drug effects , Operon/drug effects , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL