Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Proc Natl Acad Sci U S A ; 119(11): e2112008119, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35263223

ABSTRACT

SignificanceHepatitis C virus chronically infects approximately 1% of the world's population, making an effective vaccine for hepatitis C virus a major unmet public health need. The membrane-associated E1E2 envelope glycoprotein has been used in clinical studies as a vaccine candidate. However, limited neutralization breadth and difficulty in producing large amounts of homogeneous membrane-associated E1E2 have hampered efforts to develop an E1E2-based vaccine. Our previous work described the design and biochemical validation of a native-like soluble secreted form of E1E2 (sE1E2). Here, we describe the immunogenic characterization of the sE1E2 complex. sE1E2 elicited broadly neutralizing antibodies in immunized mice, with increased neutralization breadth relative to the membrane-associated E1E2, thereby validating this platform as a promising model system for vaccine development.


Subject(s)
Broadly Neutralizing Antibodies , Hepatitis C Antibodies , Hepatitis C , Immunogenicity, Vaccine , Viral Envelope Proteins , Viral Hepatitis Vaccines , Animals , Broadly Neutralizing Antibodies/biosynthesis , Broadly Neutralizing Antibodies/blood , Hepatitis C/prevention & control , Hepatitis C Antibodies/biosynthesis , Hepatitis C Antibodies/blood , Mice , Protein Multimerization , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/immunology , Viral Hepatitis Vaccines/chemistry , Viral Hepatitis Vaccines/immunology
2.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Article in English | MEDLINE | ID: mdl-33431677

ABSTRACT

Hepatitis C virus (HCV) is a major worldwide health burden, and a preventive vaccine is needed for global control or eradication of this virus. A substantial hurdle to an effective HCV vaccine is the high variability of the virus, leading to immune escape. The E1E2 glycoprotein complex contains conserved epitopes and elicits neutralizing antibody responses, making it a primary target for HCV vaccine development. However, the E1E2 transmembrane domains that are critical for native assembly make it challenging to produce this complex in a homogenous soluble form that is reflective of its state on the viral envelope. To enable rational design of an E1E2 vaccine, as well as structural characterization efforts, we have designed a soluble, secreted form of E1E2 (sE1E2). As with soluble glycoprotein designs for other viruses, it incorporates a scaffold to enforce assembly in the absence of the transmembrane domains, along with a furin cleavage site to permit native-like heterodimerization. This sE1E2 was found to assemble into a form closer to its expected size than full-length E1E2. Preservation of native structural elements was confirmed by high-affinity binding to a panel of conformationally specific monoclonal antibodies, including two neutralizing antibodies specific to native E1E2 and to its primary receptor, CD81. Finally, sE1E2 was found to elicit robust neutralizing antibodies in vivo. This designed sE1E2 can both provide insights into the determinants of native E1E2 assembly and serve as a platform for production of E1E2 for future structural and vaccine studies, enabling rational optimization of an E1E2-based antigen.


Subject(s)
Hepacivirus/drug effects , Hepatitis C Antibodies/biosynthesis , Hepatitis C/prevention & control , Viral Envelope Proteins/immunology , Viral Hepatitis Vaccines/immunology , Animals , Antibodies, Monoclonal/biosynthesis , Antibodies, Neutralizing/biosynthesis , Epitope Mapping , Epitopes/chemistry , Epitopes/immunology , Female , Gene Expression , Hepacivirus/immunology , Hepacivirus/pathogenicity , Hepatitis C/immunology , Hepatitis C/pathology , Hepatitis C/virology , Humans , Immunogenicity, Vaccine , Mice , Models, Molecular , Protein Binding , Protein Conformation , Protein Engineering/methods , Protein Multimerization , Receptors, Virus/genetics , Receptors, Virus/immunology , Recombinant Proteins/administration & dosage , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Solubility , Tetraspanin 28/genetics , Tetraspanin 28/immunology , Vaccination , Viral Envelope Proteins/administration & dosage , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics , Viral Hepatitis Vaccines/administration & dosage , Viral Hepatitis Vaccines/chemistry , Viral Hepatitis Vaccines/genetics
3.
Gastroenterology ; 162(2): 562-574, 2022 02.
Article in English | MEDLINE | ID: mdl-34655573

ABSTRACT

BACKGROUND & AIMS: Development of a prophylactic hepatitis C virus (HCV) vaccine will require accurate and reproducible measurement of neutralizing breadth of vaccine-induced antibodies. Currently available HCV panels may not adequately represent the genetic and antigenic diversity of circulating HCV strains, and the lack of standardization of these panels makes it difficult to compare neutralization results obtained in different studies. Here, we describe the selection and validation of a genetically and antigenically diverse reference panel of 15 HCV pseudoparticles (HCVpps) for neutralization assays. METHODS: We chose 75 envelope (E1E2) clones to maximize representation of natural polymorphisms observed in circulating HCV isolates, and 65 of these clones generated functional HCVpps. Neutralization sensitivity of these HCVpps varied widely. HCVpps clustered into 15 distinct groups based on patterns of relative sensitivity to 7 broadly neutralizing monoclonal antibodies. We used these data to select a final panel of 15 antigenically representative HCVpps. RESULTS: Both the 65 and 15 HCVpp panels span 4 tiers of neutralization sensitivity, and neutralizing breadth measurements for 7 broadly neutralizing monoclonal antibodies were nearly equivalent using either panel. Differences in neutralization sensitivity between HCVpps were independent of genetic distances between E1E2 clones. CONCLUSIONS: Neutralizing breadth of HCV antibodies should be defined using viruses spanning multiple tiers of neutralization sensitivity rather than panels selected solely for genetic diversity. We propose that this multitier reference panel could be adopted as a standard for the measurement of neutralizing antibody potency and breadth, facilitating meaningful comparisons of neutralization results from vaccine studies in different laboratories.


Subject(s)
Antigenic Variation/immunology , Antigens, Viral/immunology , Broadly Neutralizing Antibodies/immunology , Hepacivirus/immunology , Neutralization Tests/methods , Viral Envelope Proteins/immunology , Antigenic Variation/genetics , Antigens, Viral/genetics , Cell Line, Tumor , Hepacivirus/genetics , Hepatitis C/prevention & control , Humans , Immunogenicity, Vaccine , Reproducibility of Results , Vaccine Development , Viral Envelope Proteins/genetics , Viral Hepatitis Vaccines/immunology
4.
Nucleic Acids Res ; 49(D1): D282-D287, 2021 01 08.
Article in English | MEDLINE | ID: mdl-32890396

ABSTRACT

SARS-CoV-2, the etiologic agent of COVID-19, exemplifies the general threat to global health posed by coronaviruses. The urgent need for effective vaccines and therapies is leading to a rapid rise in the number of high resolution structures of SARS-CoV-2 proteins that collectively reveal a map of virus vulnerabilities. To assist structure-based design of vaccines and therapeutics against SARS-CoV-2 and other coronaviruses, we have developed CoV3D, a database and resource for coronavirus protein structures, which is updated on a weekly basis. CoV3D provides users with comprehensive sets of structures of coronavirus proteins and their complexes with antibodies, receptors, and small molecules. Integrated molecular viewers allow users to visualize structures of the spike glycoprotein, which is the major target of neutralizing antibodies and vaccine design efforts, as well as sets of spike-antibody complexes, spike sequence variability, and known polymorphisms. In order to aid structure-based design and analysis of the spike glycoprotein, CoV3D permits visualization and download of spike structures with modeled N-glycosylation at known glycan sites, and contains structure-based classification of spike conformations, generated by unsupervised clustering. CoV3D can serve the research community as a centralized reference and resource for spike and other coronavirus protein structures, and is available at: https://cov3d.ibbr.umd.edu.


Subject(s)
Computational Biology , Coronavirus/metabolism , Databases, Protein , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Sequence , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/metabolism , Antibodies, Viral/immunology , Antibodies, Viral/metabolism , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , Epidemics , Humans , Internet , Models, Molecular , Protein Structure, Tertiary , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
5.
PLoS Comput Biol ; 17(9): e1009380, 2021 09.
Article in English | MEDLINE | ID: mdl-34491988

ABSTRACT

The SARS-CoV-2 pandemic highlights the need for a detailed molecular understanding of protective antibody responses. This is underscored by the emergence and spread of SARS-CoV-2 variants, including Alpha (B.1.1.7) and Delta (B.1.617.2), some of which appear to be less effectively targeted by current monoclonal antibodies and vaccines. Here we report a high resolution and comprehensive map of antibody recognition of the SARS-CoV-2 spike receptor binding domain (RBD), which is the target of most neutralizing antibodies, using computational structural analysis. With a dataset of nonredundant experimentally determined antibody-RBD structures, we classified antibodies by RBD residue binding determinants using unsupervised clustering. We also identified the energetic and conservation features of epitope residues and assessed the capacity of viral variant mutations to disrupt antibody recognition, revealing sets of antibodies predicted to effectively target recently described viral variants. This detailed structure-based reference of antibody RBD recognition signatures can inform therapeutic and vaccine design strategies.


Subject(s)
Antibodies, Viral , COVID-19/virology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Antibodies, Viral/chemistry , Antibodies, Viral/metabolism , Binding Sites , Cluster Analysis , Computational Biology , Humans , Models, Molecular , Protein Binding , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
6.
J Virol ; 94(22)2020 10 27.
Article in English | MEDLINE | ID: mdl-32878891

ABSTRACT

An effective vaccine for hepatitis C virus (HCV) is a major unmet need, and it requires an antigen that elicits immune responses to key conserved epitopes. Based on structures of antibodies targeting HCV envelope glycoprotein E2, we designed immunogens to modulate the structure and dynamics of E2 and favor induction of broadly neutralizing antibodies (bNAbs) in the context of a vaccine. These designs include a point mutation in a key conserved antigenic site to stabilize its conformation, as well as redesigns of an immunogenic region to add a new N-glycosylation site and mask it from antibody binding. Designs were experimentally characterized for binding to a panel of human monoclonal antibodies (HMAbs) and the coreceptor CD81 to confirm preservation of epitope structure and preferred antigenicity profile. Selected E2 designs were tested for immunogenicity in mice, with and without hypervariable region 1, which is an immunogenic region associated with viral escape. One of these designs showed improvement in polyclonal immune serum binding to HCV pseudoparticles and neutralization of isolates associated with antibody resistance. These results indicate that antigen optimization through structure-based design of the envelope glycoproteins is a promising route to an effective vaccine for HCV.IMPORTANCE Hepatitis C virus infects approximately 1% of the world's population, and no vaccine is currently available. Due to the high variability of HCV and its ability to actively escape the immune response, a goal of HCV vaccine design is to induce neutralizing antibodies that target conserved epitopes. Here, we performed structure-based design of several epitopes of the HCV E2 envelope glycoprotein to engineer its antigenic properties. Designs were tested in vitro and in vivo, demonstrating alteration of the E2 antigenic profile in several cases, and one design led to improvement of cross-neutralization of heterologous viruses. This represents a proof of concept that rational engineering of HCV envelope glycoproteins can be used to modulate E2 antigenicity and optimize a vaccine for this challenging viral target.


Subject(s)
Hepacivirus/genetics , Hepacivirus/immunology , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibody Formation , Antigens, Viral/chemistry , Antigens, Viral/genetics , Antigens, Viral/immunology , Cell Line , Epitopes/chemistry , Epitopes/immunology , Female , HEK293 Cells , Hepatitis C/immunology , Hepatitis C/virology , Hepatitis C Antibodies/blood , Hepatitis C Antibodies/immunology , Humans , Immunogenicity, Vaccine , Mice , Models, Molecular , Neutralization Tests , Protein Conformation , Viral Envelope Proteins/genetics , Viral Hepatitis Vaccines/immunology
7.
PLoS Pathog ; 15(5): e1007772, 2019 05.
Article in English | MEDLINE | ID: mdl-31100098

ABSTRACT

Cumulative evidence supports a role for neutralizing antibodies contributing to spontaneous viral clearance during acute hepatitis C virus (HCV) infection. Information on the timing and specificity of the B cell response associated with clearance is crucial to inform vaccine design. From an individual who cleared three sequential HCV infections with genotypes 1b, 1a and 3a strains, respectively, we employed peripheral B cells to isolate and characterize neutralizing human monoclonal antibodies (HMAbs) to HCV after the genotype 1 infections. The majority of isolated antibodies, designated as HMAbs 212, target conformational epitopes on the envelope glycoprotein E2 and bound broadly to genotype 1-6 E1E2 proteins. Further, some of these antibodies showed neutralization potential against cultured genotype 1-6 viruses. Competition studies with defined broadly neutralizing HCV HMAbs to epitopes in distinct clusters, designated antigenic domains B, C, D and E, revealed that the selected HMAbs compete with B, C and D HMAbs, previously isolated from subjects with chronic HCV infections. Epitope mapping studies revealed domain B and C specificity of these HMAbs 212. Sequential serum samples from the studied subject inhibited the binding of HMAbs 212 to autologous E2 and blocked a representative domain D HMAb. The specificity of this antibody response appears similar to that observed during chronic infection, suggesting that the timing and affinity maturation of the antibody response are the critical determinants in successful and repeated viral clearance. While additional studies should be performed for individuals with clearance or persistence of HCV, our results define epitope determinants for antibody E2 targeting with important implications for the development of a B cell vaccine.


Subject(s)
Antibodies, Neutralizing/immunology , Drug Design , Hepacivirus/immunology , Hepatitis C Antibodies/immunology , Hepatitis C/prevention & control , Viral Envelope Proteins/immunology , Viral Hepatitis Vaccines/immunology , Adult , Amino Acid Sequence , Antibodies, Monoclonal/immunology , Epitope Mapping , Genotype , Hepatitis C/immunology , Hepatitis C/virology , Humans , Male , Neutralization Tests , Prospective Studies , Sequence Homology , Young Adult
8.
J Virol ; 93(7)2019 04 01.
Article in English | MEDLINE | ID: mdl-30651366

ABSTRACT

The development of a prophylactic vaccine for hepatitis C virus (HCV) remains a global health challenge. Cumulative evidence supports the importance of antibodies targeting the HCV E2 envelope glycoprotein to facilitate viral clearance. However, a significant challenge for a B cell-based vaccine is focusing the immune response on conserved E2 epitopes capable of eliciting neutralizing antibodies not associated with viral escape. We hypothesized that glycosylation might influence the antigenicity and immunogenicity of E2. Accordingly, we performed head-to-head molecular, antigenic, and immunogenic comparisons of soluble E2 (sE2) produced in (i) mammalian (HEK293) cells, which confer mostly complex- and high-mannose-type glycans; and (ii) insect (Sf9) cells, which impart mainly paucimannose-type glycans. Mass spectrometry demonstrated that all 11 predicted N-glycosylation sites were utilized in both HEK293- and Sf9-derived sE2, but that N-glycans in insect sE2 were on average smaller and less complex. Both proteins bound CD81 and were recognized by conformation-dependent antibodies. Mouse immunogenicity studies revealed that similar polyclonal antibody responses were generated against antigenic domains A to E of E2. Although neutralizing antibody titers showed that Sf9-derived sE2 induced moderately stronger responses than did HEK293-derived sE2 against the homologous HCV H77c isolate, the two proteins elicited comparable neutralization titers against heterologous isolates. Given that global alteration of HCV E2 glycosylation by expression in different hosts did not appreciably affect antigenicity or overall immunogenicity, a more productive approach to increasing the antibody response to neutralizing epitopes may be complete deletion, rather than just modification, of specific N-glycans proximal to these epitopes.IMPORTANCE The development of a vaccine for hepatitis C virus (HCV) remains a global health challenge. A major challenge for vaccine development is focusing the immune response on conserved regions of the HCV envelope protein, E2, capable of eliciting neutralizing antibodies. Modification of E2 by glycosylation might influence the immunogenicity of E2. Accordingly, we performed molecular and immunogenic comparisons of E2 produced in mammalian and insect cells. Mass spectrometry demonstrated that the predicted glycosylation sites were utilized in both mammalian and insect cell E2, although the glycan types in insect cell E2 were smaller and less complex. Mouse immunogenicity studies revealed similar polyclonal antibody responses. However, insect cell E2 induced stronger neutralizing antibody responses against the homologous isolate used in the vaccine, albeit the two proteins elicited comparable neutralization titers against heterologous isolates. A more productive approach for vaccine development may be complete deletion of specific glycans in the E2 protein.


Subject(s)
Antibody Formation/immunology , Hepacivirus/immunology , Insecta/immunology , Mammals/immunology , Viral Envelope Proteins/immunology , Animals , Antibodies, Neutralizing/immunology , Cell Line , Epitopes/immunology , Female , Glycosylation , HEK293 Cells , Hepatitis C/immunology , Hepatitis C/virology , Hepatitis C Antibodies/immunology , Humans , Insecta/virology , Mammals/virology , Mice , Polysaccharides/immunology , Sf9 Cells
9.
Microbiol Spectr ; : e0033323, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36877050

ABSTRACT

Therapeutic anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) monoclonal antibodies (MAbs) provide immunosuppressed and vulnerable populations with prophylactic and treatment interventions against coronavirus disease 2019 (COVID-19). AZD7442 (tixagevimab-cilgavimab) is a combination of extended-half-life neutralizing MAbs that bind to distinct epitopes on the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. The Omicron variant of concern carries mutations at >35 positions in the spike protein and has undergone further genetic diversification since its emergence in November 2021. Here, we characterize the in vitro neutralization activity of AZD7442 toward major viral subvariants circulating worldwide during the first 9 months of the Omicron wave. BA.2 and its derived subvariants showed the highest susceptibility to AZD7442, while BA.1 and BA.1.1 showed a lower susceptibility. BA.4/BA.5 had a susceptibility level intermediate between BA.1 and BA.2. Mutagenesis of parental Omicron subvariant spike proteins was performed to establish a molecular model to describe the underlying determinants of neutralization by AZD7442 and its component MAbs. The concurrent mutation of residues at positions 446 and 493, located in the tixagevimab and cilgavimab binding sites, was sufficient to enhance in vitro susceptibility of BA.1 to AZD7442 and its component MAbs to levels similar to the Wuhan-Hu-1+D614G virus. AZD7442 maintained neutralization activity against all Omicron subvariants tested up to and including BA.5. The evolving nature of the SARS-CoV-2 pandemic warrants continuing real-time molecular surveillance and assessment of in vitro activity of MAbs used in prophylaxis against and the treatment of COVID-19. IMPORTANCE MAbs are key therapeutic options for COVID-19 prophylaxis and treatment in immunosuppressed and vulnerable populations. Due to the emergence of SARS-CoV-2 variants, including Omicron, it is vital to ensure that neutralization is maintained for MAb-based interventions. We studied the in vitro neutralization of AZD7442 (tixagevimab-cilgavimab), a cocktail of two long-acting MAbs targeting the SARS-CoV-2 spike protein, toward Omicron subvariants circulating from November 2021 to July 2022. AZD7442 neutralized major Omicron subvariants up to and including BA.5. The mechanism of action responsible for the lower in vitro susceptibility of BA.1 to AZD7442 was investigated using in vitro mutagenesis and molecular modeling. A combination of mutations at two spike protein positions, namely, 446 and 493, was sufficient to enhance BA.1 susceptibility to AZD7442 to levels similar to the Wuhan-Hu-1+D614G ancestral virus. The evolving nature of the SARS-CoV-2 pandemic warrants continuing real-time global molecular surveillance and mechanistic studies of therapeutic MAbs for COVID-19.

10.
Nat Commun ; 14(1): 3980, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37407593

ABSTRACT

Hepatitis C virus (HCV) is a major global health burden as the leading causative agent of chronic liver disease and hepatocellular carcinoma. While the main antigenic target for HCV-neutralizing antibodies is the membrane-associated E1E2 surface glycoprotein, the development of effective vaccines has been hindered by complications in the biochemical preparation of soluble E1E2 ectodomains. Here, we present a cryo-EM structure of an engineered, secreted E1E2 ectodomain of genotype 1b in complex with neutralizing antibodies AR4A, HEPC74, and IGH520. Structural characterization of the E1 subunit and C-terminal regions of E2 reveal an overall architecture of E1E2 that concurs with that observed for non-engineered full-length E1E2. Analysis of the AR4A epitope within a region of E2 that bridges between the E2 core and E1 defines the structural basis for its broad neutralization. Our study presents the structure of an E1E2 complex liberated from membrane via a designed scaffold, one that maintains all essential structural features of native E1E2. The study advances the understanding of the E1E2 heterodimer structure, crucial for the rational design of secreted E1E2 antigens in vaccine development.


Subject(s)
Hepacivirus , Hepatitis C , Humans , Antibodies, Neutralizing , Epitopes , Viral Envelope Proteins
11.
Nat Commun ; 14(1): 4347, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37468530

ABSTRACT

Nirsevimab is a monoclonal antibody that binds to the respiratory syncytial virus (RSV) fusion protein. During the Phase 2b (NCT02878330) and MELODY (NCT03979313) clinical trials, infants received one dose of nirsevimab or placebo before their first RSV season. In this pre-specified analysis, isolates from RSV infections were subtyped, sequenced and analyzed for nirsevimab binding site substitutions; subsequently, recombinant RSVs were engineered for microneutralization susceptibility testing. Here we show that the frequency of infections caused by subtypes A and B is similar across and within the two trials. In addition, RSV A had one and RSV B had 10 fusion protein substitutions occurring at >5% frequency. Notably, RSV B binding site substitutions were rare, except for the highly prevalent I206M:Q209R, which increases nirsevimab susceptibility; RSV B isolates from two participants had binding site substitutions that reduce nirsevimab susceptibility. Overall, >99% of isolates from the Phase 2b and MELODY trials retained susceptibility to nirsevimab.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Humans , Infant , Antibodies, Monoclonal, Humanized/therapeutic use , Randomized Controlled Trials as Topic , Recombinant Proteins/therapeutic use , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus Infections/epidemiology
12.
Nat Commun ; 13(1): 19, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013235

ABSTRACT

T cells play a vital role in combatting SARS-CoV-2 and forming long-term memory responses. Whereas extensive structural information is available on neutralizing antibodies against SARS-CoV-2, such information on SARS-CoV-2-specific T-cell receptors (TCRs) bound to their peptide-MHC targets is lacking. Here we determine the structures of a public and a private TCR from COVID-19 convalescent patients in complex with HLA-A2 and two SARS-CoV-2 spike protein epitopes (YLQ and RLQ). The structures reveal the basis for selection of particular TRAV and TRBV germline genes by the public but not the private TCR, and for the ability of the TCRs to recognize natural variants of RLQ but not YLQ. Neither TCR recognizes homologous epitopes from human seasonal coronaviruses. By elucidating the mechanism for TCR recognition of an immunodominant yet variable epitope (YLQ) and a conserved but less commonly targeted epitope (RLQ), this study can inform prospective efforts to design vaccines to elicit pan-coronavirus immunity.


Subject(s)
COVID-19/immunology , Epitopes, T-Lymphocyte/immunology , HLA-A2 Antigen/immunology , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/virology , COVID-19/virology , Epitopes, T-Lymphocyte/metabolism , HLA-A2 Antigen/chemistry , HLA-A2 Antigen/metabolism , Humans , Immunodominant Epitopes/immunology , Immunodominant Epitopes/metabolism , Jurkat Cells , K562 Cells , Peptides/chemistry , Peptides/immunology , Peptides/metabolism , Protein Binding , Protein Conformation , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Surface Plasmon Resonance/methods
13.
Viruses ; 13(5)2021 05 05.
Article in English | MEDLINE | ID: mdl-34063143

ABSTRACT

A hepatitis C virus (HCV) vaccine is a critical yet unfulfilled step in addressing the global disease burden of HCV. While decades of research have led to numerous clinical and pre-clinical vaccine candidates, these efforts have been hindered by factors including HCV antigenic variability and immune evasion. Structure-based and rational vaccine design approaches have capitalized on insights regarding the immune response to HCV and the structures of antibody-bound envelope glycoproteins. Despite successes with other viruses, designing an immunogen based on HCV glycoproteins that can elicit broadly protective immunity against HCV infection is an ongoing challenge. Here, we describe HCV vaccine design approaches where immunogens were selected and optimized through analysis of available structures, identification of conserved epitopes targeted by neutralizing antibodies, or both. Several designs have elicited immune responses against HCV in vivo, revealing correlates of HCV antigen immunogenicity and breadth of induced responses. Recent studies have elucidated the functional, dynamic and immunological features of key regions of the viral envelope glycoproteins, which can inform next-generation immunogen design efforts. These insights and design strategies represent promising pathways to HCV vaccine development, which can be further informed by successful immunogen designs generated for other viruses.


Subject(s)
Hepacivirus/chemistry , Hepacivirus/immunology , Hepatitis C Antigens/chemistry , Hepatitis C Antigens/immunology , Vaccine Development/methods , Animals , Antibodies, Neutralizing/immunology , Clinical Trials as Topic , Hepatitis C Antibodies/immunology , Humans , Mice , Models, Molecular , Protein Conformation , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/immunology , Viral Hepatitis Vaccines/immunology
14.
Structure ; 29(6): 606-621.e5, 2021 06 03.
Article in English | MEDLINE | ID: mdl-33539768

ABSTRACT

Accurate predictive modeling of antibody-antigen complex structures and structure-based antibody design remain major challenges in computational biology, with implications for biotherapeutics, immunity, and vaccines. Through a systematic search for high-resolution structures of antibody-antigen complexes and unbound antibody and antigen structures, in conjunction with identification of experimentally determined binding affinities, we have assembled a non-redundant set of test cases for antibody-antigen docking and affinity prediction. This benchmark more than doubles the number of antibody-antigen complexes and corresponding affinities available in our previous benchmarks, providing an unprecedented view of the determinants of antibody recognition and insights into molecular flexibility. Initial assessments of docking and affinity prediction tools highlight the challenges posed by this diverse set of cases, which includes camelid nanobodies, therapeutic monoclonal antibodies, and broadly neutralizing antibodies targeting viral glycoproteins. This dataset will enable development of advanced predictive modeling and design methods for this therapeutically relevant class of protein-protein interactions.


Subject(s)
Antibodies/chemistry , Antibodies/metabolism , Antigens/chemistry , Antigens/metabolism , Algorithms , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/metabolism , Antibodies, Viral/chemistry , Antibodies, Viral/metabolism , Antigen-Antibody Complex/chemistry , Benchmarking , Broadly Neutralizing Antibodies/chemistry , Broadly Neutralizing Antibodies/metabolism , Computational Biology/methods , Molecular Docking Simulation , Protein Binding , Protein Conformation , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/metabolism , Software , Structure-Activity Relationship
15.
bioRxiv ; 2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32577656

ABSTRACT

SARS-CoV-2, the etiologic agent behind COVID-19, exemplifies the general threat to global health posed by coronaviruses. The urgent need for effective vaccines and therapies is leading to a rapid rise in the number of high resolution structures of SARS-CoV-2 proteins that collectively reveal a map of virus vulnerabilities. To assist structure-based design of vaccines and therapeutics against SARS-CoV-2 and other coronaviruses, we have developed CoV3D, a database and resource for coronavirus protein structures, which is updated on a weekly basis. CoV3D provides users with comprehensive sets of structures of coronavirus proteins and their complexes with antibodies, receptors, and small molecules. Integrated molecular viewers allow users to visualize structures of the spike glycoprotein, which is the major target of neutralizing antibodies and vaccine design efforts, as well as sets of spike-antibody complexes, spike sequence variability, and known polymorphisms. In order to aid structure-based design and analysis of the spike glycoprotein, CoV3D permits visualization and download of spike structures with modeled N-glycosylation at known glycan sites, and contains structure-based classification of spike conformations, generated by unsupervised clustering. CoV3D can serve the research community as a centralized reference and resource for spike and other coronavirus protein structures, and is available at: https://cov3d.ibbr.umd.edu.

16.
Virology ; 527: 180-187, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30530224

ABSTRACT

Zika virus (ZIKV) is a mosquito-borne positive-sense single-stranded RNA virus in the family of Flaviviridae. Unlike other flaviviruses, ZIKV infection of pregnant women may result in birth defects in their newborns, such as microcephaly or vision problem. ZIKV is known to antagonize the interferon (IFN) production in infected cells. However, the exact mechanism of this interference is not fully understood. Here, we demonstrate that NS5 protein of ZIKV MR766 strain antagonizes IFN production through inhibiting the activation of TANK-binding kinase 1 (TBK1), which phosphorylates the transcription activator IFN regulatory factor 3 (IRF3). Mechanistically, NS5 interacts with the ubiquitin-like domain of TBK1 and results in less complex of TBK1 and TNF (tumor necrosis factor) receptor-associated factor 6 (TRAF6), leading to dampened TBK1 activation and IRF3 phosphorylation. Our study provides insights into the mechanism of ZIKV evasion of IFN-mediated innate immunity.


Subject(s)
Interferon-beta/metabolism , Protein Serine-Threonine Kinases/metabolism , Viral Nonstructural Proteins/metabolism , Zika Virus Infection/metabolism , Zika Virus/physiology , Catalytic Domain , Cell Line , Humans , Immunity, Innate , Interferon Regulatory Factor-3/metabolism , Intracellular Signaling Peptides and Proteins , Phosphorylation , Protein Binding , Protein Interaction Domains and Motifs , Protein Serine-Threonine Kinases/chemistry , Signal Transduction , TNF Receptor-Associated Factor 6/metabolism , Viral Nonstructural Proteins/chemistry , Zika Virus Infection/virology
18.
Front Immunol ; 9: 1117, 2018.
Article in English | MEDLINE | ID: mdl-29892287

ABSTRACT

Hepatitis C virus (HCV) is a major global health concern, and though therapeutic options have improved, no vaccine is available despite decades of research. As HCV can rapidly mutate to evade the immune response, an effective HCV vaccine must rely on identification and characterization of sites critical for broad immune protection and viral neutralization. This knowledge depends on structural and mechanistic insights of the E1 and E2 envelope glycoproteins, which assemble as a heterodimer on the surface of the virion, engage coreceptors during host cell entry, and are the primary targets of antibodies. Due to the challenges in determining experimental structures, structural information on E1 and E2 and their interaction is relatively limited, providing opportunities to model the structures, interactions, and dynamics of these proteins. This review highlights efforts to model the E2 glycoprotein structure, the assembly of the functional E1E2 heterodimer, the structure and binding of human coreceptors, and recognition by key neutralizing antibodies. We also discuss a comparison of recently described models of full E1E2 heterodimer structures, a simulation of the dynamics of key epitope sites, and modeling glycosylation. These modeling efforts provide useful mechanistic hypotheses for further experimental studies of HCV envelope assembly, recognition, and viral fitness, and underscore the benefit of combining experimental and computational modeling approaches to reveal new insights. Additionally, computational design approaches have produced promising candidates for epitope-based vaccine immunogens that specifically target key epitopes, providing a possible avenue to optimize HCV vaccines versus using native glycoproteins. Advancing knowledge of HCV envelope structure and immune recognition is highly applicable toward the development of an effective vaccine for HCV and can provide lessons and insights relevant to modeling and characterizing other viruses.


Subject(s)
Hepacivirus , Models, Molecular , Quantitative Structure-Activity Relationship , Viral Envelope Proteins/chemistry , Binding Sites , Hepacivirus/metabolism , Hepatitis Antibodies/chemistry , Hepatitis Antibodies/immunology , Hepatitis C/virology , Humans , Protein Binding , Protein Conformation , Protein Multimerization , Structure-Activity Relationship , Viral Envelope Proteins/immunology , Viral Envelope Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL