Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 590
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 618(7966): 799-807, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37316670

ABSTRACT

Plants deploy receptor-like kinases and nucleotide-binding leucine-rich repeat receptors to confer host plant resistance (HPR) to herbivores1. These gene-for-gene interactions between insects and their hosts have been proposed for more than 50 years2. However, the molecular and cellular mechanisms that underlie HPR have been elusive, as the identity and sensing mechanisms of insect avirulence effectors have remained unknown. Here we identify an insect salivary protein perceived by a plant immune receptor. The BPH14-interacting salivary protein (BISP) from the brown planthopper (Nilaparvata lugens Stål) is secreted into rice (Oryza sativa) during feeding. In susceptible plants, BISP targets O. satvia RLCK185 (OsRLCK185; hereafter Os is used to denote O. satvia-related proteins or genes) to suppress basal defences. In resistant plants, the nucleotide-binding leucine-rich repeat receptor BPH14 directly binds BISP to activate HPR. Constitutive activation of Bph14-mediated immunity is detrimental to plant growth and productivity. The fine-tuning of Bph14-mediated HPR is achieved through direct binding of BISP and BPH14 to the selective autophagy cargo receptor OsNBR1, which delivers BISP to OsATG8 for degradation. Autophagy therefore controls BISP levels. In Bph14 plants, autophagy restores cellular homeostasis by downregulating HPR when feeding by brown planthoppers ceases. We identify an insect saliva protein sensed by a plant immune receptor and discover a three-way interaction system that offers opportunities for developing high-yield, insect-resistant crops.


Subject(s)
Hemiptera , Insect Proteins , Oryza , Plant Defense Against Herbivory , Plant Proteins , Animals , Hemiptera/immunology , Hemiptera/physiology , Leucine/metabolism , Nucleotides/metabolism , Oryza/growth & development , Oryza/immunology , Oryza/metabolism , Oryza/physiology , Plant Defense Against Herbivory/immunology , Plant Defense Against Herbivory/physiology , Plant Proteins/chemistry , Plant Proteins/metabolism , Insect Proteins/metabolism , Autophagy
2.
PLoS Biol ; 20(11): e3001856, 2022 11.
Article in English | MEDLINE | ID: mdl-36318514

ABSTRACT

Feingold syndrome type 1, caused by loss-of-function of MYCN, is characterized by varied phenotypes including esophageal and duodenal atresia. However, no adequate model exists for studying the syndrome's pathological or molecular mechanisms, nor is there a treatment strategy. Here, we developed a zebrafish Feingold syndrome type 1 model with nonfunctional mycn, which had severe intestinal atresia. Single-cell RNA-seq identified a subcluster of intestinal cells that were highly sensitive to Mycn, and impaired cell proliferation decreased the overall number of intestinal cells in the mycn mutant fish. Bulk RNA-seq and metabolomic analysis showed that expression of ribosomal genes was down-regulated and that amino acid metabolism was abnormal. Northern blot and ribosomal profiling analysis showed abnormal rRNA processing and decreases in free 40S, 60S, and 80S ribosome particles, which led to impaired translation in the mutant. Besides, both Ribo-seq and western blot analysis showed that mTOR pathway was impaired in mycn mutant, and blocking mTOR pathway by rapamycin treatment can mimic the intestinal defect, and both L-leucine and Rheb, which can elevate translation via activating TOR pathway, could rescue the intestinal phenotype of mycn mutant. In summary, by this zebrafish Feingold syndrome type 1 model, we found that disturbance of ribosomal biogenesis and blockage of protein synthesis during development are primary causes of the intestinal defect in Feingold syndrome type 1. Importantly, our work suggests that leucine supplementation may be a feasible and easy treatment option for this disease.


Subject(s)
Microcephaly , Zebrafish , Animals , N-Myc Proto-Oncogene Protein , Zebrafish/metabolism , Microcephaly/genetics , TOR Serine-Threonine Kinases/metabolism , Leucine
3.
Clin Immunol ; 263: 110232, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701960

ABSTRACT

IgA nephropathy (IgAN), which has been confirmed as a complement mediated autoimmune disease, is also one form of glomerulonephritis associated with COVID-19. Here, we aim to investigate the clinical and immunological characteristics of patients with IgAN after COVID-19. The level of plasma level of C5a (p < 0.001), soluble C5b-9 (p = 0.018), FHR5 (p < 0.001) were all significantly higher in Group CoV (33 patients with renal biopsy-proven IgAN experienced COVID-19) compared with Group non-CoV (44 patients with IgAN without COVID-19), respectively. Compared with Group non-CoV, the intensity of glomerular C4d (p = 0.017) and MAC deposition (p < 0.001) and Gd-IgA1 deposition (p = 0.005) were much stronger in Group CoV. Our finding revealed that for IgAN after COVID-19, mucosal immune responses to SARS-CoV-2 infection may result in the overactivation of systemic and renal local complement system, and increased glomerular deposition of Gd-IgA1, which may lead to renal dysfunction and promote renal progression in IgAN patients.


Subject(s)
COVID-19 , Glomerulonephritis, IGA , SARS-CoV-2 , Humans , Glomerulonephritis, IGA/immunology , Glomerulonephritis, IGA/blood , COVID-19/immunology , COVID-19/complications , Female , Male , Adult , SARS-CoV-2/immunology , Middle Aged , Complement Activation/immunology , Complement System Proteins/immunology , Complement System Proteins/metabolism , Immunoglobulin A/blood , Immunoglobulin A/immunology , Kidney Glomerulus/pathology , Kidney Glomerulus/immunology , Complement C5a/immunology , Complement C5a/metabolism
4.
J Transl Med ; 22(1): 595, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926732

ABSTRACT

BACKGROUND: Variations exist in the response of patients with Crohn's disease (CD) to ustekinumab (UST) treatment, but the underlying cause remains unknown. Our objective was to investigate the involvement of immune cells and identify potential biomarkers that could predict the response to interleukin (IL) 12/23 inhibitors in patients with CD. METHODS: The GSE207022 dataset, which consisted of 54 non-responders and 9 responders to UST in a CD cohort, was analyzed. Differentially expressed genes (DEGs) were identified and subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Least absolute shrinkage and selection operator (LASSO) regression was used to screen the most powerful hub genes. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the predictive performances of these genes. Single-sample Gene Set Enrichment Analysis (ssGSEA) was used to estimate the proportions of immune cell types. These significantly altered genes were subjected to cluster analysis into immune cell-related infiltration. To validate the reliability of the candidates, patients prescribed UST as a first-line biologic in a prospective cohort were included as an independent validation dataset. RESULTS: A total of 99 DEGs were identified in the integrated dataset. GO and KEGG analyses revealed significant enrichment of immune response pathways in patients with CD. Thirteen genes (SOCS3, CD55, KDM5D, IGFBP5, LCN2, SLC15A1, XPNPEP2, HLA-DQA2, HMGCS2, DDX3Y, ITGB2, CDKN2B and HLA-DQA1), which were primarily associated with the response versus nonresponse patients, were identified and included in the LASSO analysis. These genes accurately predicted treatment response, with an area under the curve (AUC) of 0.938. T helper cell type 1 (Th1) cell polarization was comparatively strong in nonresponse individuals. Positive connections were observed between Th1 cells and the LCN2 and KDM5D genes. Furthermore, we employed an independent validation dataset and early experimental verification to validate the LCN2 and KDM5D genes as effective predictive markers. CONCLUSIONS: Th1 cell polarization is an important cause of nonresponse to UST therapy in patients with CD. LCN2 and KDM5D can be used as predictive markers to effectively identify nonresponse patients. TRIAL REGISTRATION: Trial registration number: NCT05542459; Date of registration: 2022-09-14; URL: https://www. CLINICALTRIALS: gov .


Subject(s)
Computational Biology , Crohn Disease , RNA, Messenger , Ustekinumab , Adult , Female , Humans , Male , Cluster Analysis , Computational Biology/methods , Crohn Disease/genetics , Crohn Disease/drug therapy , Gene Expression Profiling , Gene Ontology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Prospective Studies , Reproducibility of Results , RNA, Messenger/genetics , RNA, Messenger/metabolism , ROC Curve , Transcriptome/genetics , Ustekinumab/therapeutic use , Ustekinumab/pharmacology
5.
FASEB J ; 37(11): e23276, 2023 11.
Article in English | MEDLINE | ID: mdl-37878291

ABSTRACT

Acute kidney injury (AKI) and chronic kidney disease (CKD) are interconnected syndromes that represent a global public health challenge. Here, we identified a specific role of survival of motor neuron (SMN) in ischemia/reperfusion (I/R)-induced kidney injury and progression of CKD. SMN was an essential protein in all cell type and was reported to play important roles in multiple fundamental cellular homeostatic pathways. However, the function of SMN in experimental models of I/R-induced kidney fibrosis has not extensively studied. Genetic ablation of SMN or small interfering RNA-base knockdown of SMN expression aggravated the tubular injury and interstitial fibrosis. Administration of scAAV9-CB-SMN or epithelial cell overexpression of SMN reduced I/R-induced kidney dysfunction and attenuated AKI-to-CKD transition, indicating that SMN is vital for the preservation and recovery of tubular phenotype. Our data showed that the endoplasmic reticulum stress (ERS) induced by I/R was persistent and became progressively more severe in the kidney without SMN. On the contrary, overexpression of SMN prevented against I/R-induced ERS and tubular cell damage. In summary, our data collectively substantiate a critical role of SMN in regulating the ERS activation and phenotype of AKI-to-CKD transition that may contribute to renal pathology during injury and repair.


Subject(s)
Acute Kidney Injury , Renal Insufficiency, Chronic , Reperfusion Injury , Survival of Motor Neuron 1 Protein , Humans , Acute Kidney Injury/genetics , Endoplasmic Reticulum Stress/genetics , Fibrosis , Haploinsufficiency , Ischemia , Kidney , Renal Insufficiency, Chronic/genetics , Reperfusion Injury/genetics , Survival of Motor Neuron 1 Protein/genetics
6.
J Org Chem ; 89(11): 7899-7912, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38728220

ABSTRACT

An efficient, practical, and metal-free protocol for the synthesis of silicon-containing isoindolin-1-ones and deuterated analogues via the synergistic combination of an organic photoredox and hydrogen atom transfer process is described. This strategy features mild reaction conditions, high atom economy, and excellent functional group compatibility, delivering a myriad of structurally diverse and valuable products with good to excellent yields.

7.
BMC Gastroenterol ; 24(1): 36, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38229035

ABSTRACT

BACKGROUND: Adenosquamous carcinoma is a rare sub-type of colorectal cancer with a poor prognosis. Little is known about its clinicopathological and molecular characteristics in Asian populations. This study aimed to investigate these features in a cohort of patients with adenosquamous carcinoma in the colorectum. METHODS: Tumor cases pathologically diagnosed with colorectal adenosquamous carcinoma were retrieved from the Sixth Affiliated Hospital, Sun Yat-sen University tissue archive between December 2012 and June 2020. Clinicopathological features, molecular characteristics, and oncology outcomes were analyzed. RESULTS: Among 18,139 cases of colorectal cancer, 11 were diagnosed with adenosquamous carcinoma, providing an incidence rate of 0.061%. The median overall survival (OS) was 14 months, and the expected 3-year OS rate was 29.6%. As of October 14, 2022, four cases had local recurrence and five had distant metastasis. KRAS gene mutations were found in four of seven patients (57.1%), and three out of eleven (27.3%) patients had mismatch repair-deficient (dMMR) tumors. CONCLUSIONS: Adenosquamous carcinoma is associated with a poor prognosis. Compared to other sub-types of colorectal cancer, a higher proportion of patients with dMMR and KRAS mutations were observed. These findings suggested that more patients with adenosquamous carcinoma could benefit from targeted therapies, such as immunotherapy.


Subject(s)
Brain Neoplasms , Carcinoma, Adenosquamous , Colorectal Neoplasms , Neoplastic Syndromes, Hereditary , Humans , Carcinoma, Adenosquamous/genetics , Carcinoma, Adenosquamous/pathology , Prognosis , Proto-Oncogene Proteins p21(ras)/genetics , Colorectal Neoplasms/pathology , Retrospective Studies
8.
Article in English | MEDLINE | ID: mdl-38972728

ABSTRACT

BACKGROUND AND AIM: There is a pressing need for non-invasive preoperative prediction of microvascular invasion (MVI) in hepatocellular carcinoma (HCC). This study investigates the potential of exosome-derived mRNA in plasma as a biomarker for diagnosing MVI. METHODS: Patients with suspected HCC undergoing hepatectomy were prospectively recruited for preoperative peripheral blood collection. Exosomal RNA profiling was conducted using RNA sequencing in the discovery cohort, followed by differential expression analysis to identify candidate targets. We employed multiplexed droplet digital PCR technology to efficiently validate them in a larger sample size cohort. RESULTS: A total of 131 HCC patients were ultimately enrolled, with 37 in the discovery cohort and 94 in the validation cohort. In the validation cohort, the expression levels of RSAD2, PRPSAP1, and HOXA2 were slightly elevated while CHMP4A showed a slight decrease in patients with MVI compared with those without MVI. These trends were consistent with the findings in the discovery cohort, although they did not reach statistical significance (P > 0.05). Notably, the expression level of exosomal PRPSAP1 in plasma was significantly higher in patients with more than 5 MVI than in those without MVI (0.147 vs 0.070, P = 0.035). CONCLUSION: This study unveils the potential of exosome-derived PRPSAP1 in plasma as a promising indicator for predicting MVI status preoperatively.

9.
Skin Res Technol ; 30(6): e13791, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38895902

ABSTRACT

BACKGROUND: Hypertrophic scars (HS) are a common disfiguring condition in daily clinical encounters which brings a lot of anxieties and concerns to patients, but the treatment options of HS are limited. Black cloth ointment (BCO), as a cosmetic ointment applicable to facial scars, has shown promising therapeutic effects for facial scarring. However, the molecular mechanisms underlying its therapeutic effects remain unclear. MATERIAL AND METHODS: Network pharmacology was first applied to analyze the major active components of BCO and the related signaling pathways. Subsequently, rabbit ear scar model was successfully established to determine the pharmacological effects of BCO and its active component ß-elemene on HS. Finally, the molecular mechanism of BCO and ß-elemene was analyzed by Western blot. RESULTS: Through the network pharmacology, it showed that ß-elemene was the main active ingredient of BCO, and it could significantly improve the pathological structure of HS and reduce collagen deposition. BCO and ß-elemene could increase the expression of ER stress-related markers and promote the increase of apoptotic proteins in the Western blot experiment and induce the apoptosis of myofibroblasts. CONCLUSIONS: Our findings indicate that the material basis for the scar-improving effects of the BCO is ß-elemene, and cellular apoptosis is the key mechanism through which the BCO and ß-elemene exert their effects.


Subject(s)
Cicatrix, Hypertrophic , Disease Models, Animal , Network Pharmacology , Ointments , Sesquiterpenes , Cicatrix, Hypertrophic/drug therapy , Cicatrix, Hypertrophic/pathology , Cicatrix, Hypertrophic/metabolism , Rabbits , Animals , Network Pharmacology/methods , Sesquiterpenes/pharmacology , Humans , Apoptosis/drug effects , Female , Male
10.
Knee Surg Sports Traumatol Arthrosc ; 32(6): 1622-1630, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38586974

ABSTRACT

PURPOSE: Both the arthroscopic Broström-Gould and Lasso-loop stitch techniques are commonly used to treat chronic lateral ankle instability (CLAI). The purpose of this study is to introduce an arthroscopic one-step outside-in Broström-Gould (AOBG) technique and compare the mid-term outcomes of the AOBG technique and Lasso-loop stitch technique. METHODS: All CLAI patients who underwent arthroscopic lateral ankle stabilization surgery in our department from 2018 to 2019 were retrospectively enrolled. The patients were divided into two groups according to the surgical methods employed: the AOBG technique (Group A) and the Lasso-loop technique (Group B). The visual analogue scale pain score, American Orthopaedic Foot and Ankle Society ankle hindfoot score, Tegner activity score and Karlsson-Peterson score were evaluated preoperatively and during the follow-up from June to December 2022. The surgical duration, return to sports, sprain recurrence and surgical complications were also recorded and compared. RESULTS: A total of 74 patients (Group A, n = 42; Group B, n = 32) were included in this study with a mean follow-up of 39 months. No statistically significant differences were observed in demographic parameters or follow-up time between the two groups. Postoperative clinical scores indicated a significant improvement (all with p < 0.001) with no significant difference between the two groups (not significant [n.s.]). There was no significant difference in the surgical duration (46.1 vs. 49.7 min, n.s.), return to sports (92.9% vs. 93.8%, n.s.), or sprain recurrence (4.8% vs. 6.3%, n.s.). Only two cases in Group A reported knot irritation (4.8% vs. 0, n.s.), and one case in Group A experienced local skin numbness (0 vs. 3.1%, n.s.), with no significant difference. CONCLUSION: Both the AOBG and Lasso-loop stitch techniques yielded comparable favourable mid-term outcomes and return to sports with a low rate of surgical complications. Both procedures could be feasible strategies for CLAI patients. LEVEL OF EVIDENCE: Level III.


Subject(s)
Arthroscopy , Joint Instability , Suture Techniques , Humans , Joint Instability/surgery , Arthroscopy/methods , Male , Female , Retrospective Studies , Adult , Chronic Disease , Treatment Outcome , Recurrence , Lateral Ligament, Ankle/surgery , Return to Sport , Ankle Joint/surgery , Operative Time , Pain Measurement , Young Adult
11.
J Clin Rheumatol ; 30(4): 138-144, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38351510

ABSTRACT

BACKGROUND: Although observational studies have revealed associations between idiopathic inflammatory myopathies (IIMs) and lung cancer (LC), they have not established a causal relationship between these 2 conditions. METHODS: We used a 2-sample Mendelian randomization approach to examine the bidirectional causal associations between IIMs and LC, using single-nucleotide polymorphisms selected from high-quality genome-wide association studies in the FinnGen database. Sensitivity analyses were conducted to assess potential heterogeneity and pleiotropy impacts on the Mendelian randomization results. RESULTS: Our analysis demonstrated a positive causal effect of genetically increased IIM risk on LC (odds ratio, 1.114; 95% confidence interval, 1.057-1.173; p = 5.63 × 10 -5 ), particularly on the lung squamous cell carcinoma subtype (odds ratio, 1.168, 95% confidence interval, 1.049-1.300, p = 0.00451), but not on lung adenocarcinoma or small cell lung cancer. No causal effect of LC on IIMs was identified. Sensitivity analyses indicated that horizontal pleiotropy was unlikely to influence causality, and leave-one-out analysis confirmed that the observed associations were not driven by a single-nucleotide polymorphism. CONCLUSION: Our findings offer compelling evidence of a positive causal relationship between IIMs and LC, particularly with regard to lung squamous cell carcinoma, in the European population. Conversely, there is no evidence of LC causing IIMs. We recommend that LC diagnosis consider the specific characteristics of IIMs.


Subject(s)
Genome-Wide Association Study , Lung Neoplasms , Mendelian Randomization Analysis , Myositis , Polymorphism, Single Nucleotide , Humans , Mendelian Randomization Analysis/methods , Lung Neoplasms/genetics , Lung Neoplasms/epidemiology , Lung Neoplasms/etiology , Myositis/genetics , Myositis/epidemiology , Myositis/diagnosis , Genetic Predisposition to Disease , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/epidemiology , Carcinoma, Squamous Cell/etiology , Causality
12.
Eur J Immunol ; 52(12): 2010-2012, 2022 12.
Article in English | MEDLINE | ID: mdl-36153835

ABSTRACT

We found an elevation of circulating TFH13 cell subset in asthmatic children and the frequency of TFH13 cells positively correlated with the plasma dust mite-specific IgE levels. These results indicated that TFH13 cell subset may be responsible for the immunopathogenesis of excessive IgE accumulation in children with allergic asthma.


Subject(s)
T-Lymphocytes, Helper-Inducer , Humans , Child
13.
Biochem Biophys Res Commun ; 683: 149114, 2023 11 26.
Article in English | MEDLINE | ID: mdl-37857164

ABSTRACT

Long noncoding RNA (lncRNA) is implicated in both cancer development and pain process. However, the role of lncRNA in the development of cancer-induced bone pain (CIBP) is unclear. LncRNA NONRATT014888.2 is highly expressed in tibia related dorsal root ganglions (DRGs) in CIBP rats which function is unknown. CIBP was induced by injection of Walker 256 mammary gland tumor cells into the tibia canal of female SD rats. Paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) of rats were measured. Down-regulation of NONRATT014888.2 by siRNA in CIBP rats markedly attenuated hind-paw mechanical pain hypersensitivity. LncRNA-predicted target mRNAs analysis and mRNA sequencing results cued Socs3, Npr3 were related with NONRATT014888.2. Intrathecal injection of NONRATT014888.2-siR206 upregulated Npr3 both in mRNA and protein level. Npr3 was co-expressed in NONRATT014888.2-positive DRGs neurons and mainly located in cytoplasm, but not in Glial fibrillary acidic protein (GFAP)-positive cells. Intrathecal injection of ADV-Npr3 upregulated Npr3 expression and enhanced the PWT of CIBP rats. Our results suggest that upregulated lncRNA NONRATT014888.2 contributed to hyperalgesia in CIBP rats, and the mechanism may through downregulation of Npr3.


Subject(s)
Bone Neoplasms , Cancer Pain , Neoplasms , RNA, Long Noncoding , Rats , Female , Animals , RNA, Long Noncoding/genetics , Down-Regulation , Rats, Sprague-Dawley , Pain/genetics , Pain/metabolism , Cancer Pain/genetics , Cancer Pain/pathology , Hyperalgesia/genetics , RNA, Messenger/metabolism , Natriuretic Peptides/metabolism , Bone Neoplasms/complications , Bone Neoplasms/genetics , Bone Neoplasms/metabolism
14.
J Org Chem ; 88(20): 14351-14356, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37802501

ABSTRACT

Herein, we present a decarboxylative thiocarbonylation of aryl and alkenyl sulfonium salts with oxalic acid monothioethers (OAMs), which can be achieved by visible light-accelerated palladium catalysis. Sulfonium salts are widely available, and OAM is an easily accessible and stored reagent; this mild reaction method can also be used for the synthesis of different types of thioester compounds. The reaction represents a new application of visible light-accelerated palladium catalysis in catalytic decarboxylative cross-couplings.

15.
Microb Ecol ; 85(4): 1288-1299, 2023 May.
Article in English | MEDLINE | ID: mdl-35522265

ABSTRACT

Microbial co-culture simulates the natural ecosystem through the combination of artificial microbes. This approach has been widely applied in the study of activating silent genes to reveal novel secondary metabolites. However, there are still challenges in determining the biosynthetic pathways. In this study, the effects of microbial co-culture on the morphology of the microbes were verified by the morphological observation. Subsequently, through the strategy combining substrate feeding, stable isotope labeling, and gene expression analysis, the biosynthetic pathways of five benzoic acid derivatives N1-N4 and N7 were demonstrated: the secondary metabolite 10-deoxygerfelin of A. sydowii acted as an inducer to induce B. subtilis to produce benzoic acid, which was further converted into 3-OH-benzoic acid by A. sydowii. Subsequently, A. sydowii used 3-OH-benzoic acid as the substrate to synthesize the new compound N2, and then N1, N3, N4, and N7 were biosynthesized upon the upregulation of hydrolase, hydroxylase, and acyltransferase during co-culture. The plate zone analysis suggested that the biosynthesis of the newly induced compounds N1-N4 was mainly attributed to A. sydowii, and both A. sydowii and B. subtilis were indispensable for the biosynthesis of N7. This study provides an important basis for a better understanding of the interactions among microorganisms, providing new ideas for studying the biosynthetic pathways of the newly induced secondary metabolites in co-culture.


Subject(s)
Bacillus subtilis , Ecosystem , Bacillus subtilis/genetics , Coculture Techniques , Benzoic Acid
16.
Org Biomol Chem ; 21(13): 2822-2827, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36928523

ABSTRACT

We report a highly efficient one-pot, three-component strategy for the construction of alkyl-alkyl sulfones through a photoinduced TBADT-catalyzed C(sp3)-H sulfonylation of unactivated hydrocarbon compounds. A wide range of commercially available hydrocarbon compounds and bioactive molecules can be successfully applied to the catalytic system, affording the corresponding alkyl-alkyl sulfones in good to excellent yields (>50 examples, up to 87% yield).

17.
BMC Nephrol ; 24(1): 217, 2023 07 22.
Article in English | MEDLINE | ID: mdl-37481568

ABSTRACT

BACKGROUND: Studies reported that kelch-like protein 3 (KLHL3)-Cullin3(CUL3) E3 ligase ubiquitinated with-no-lysine kinase 4 (WNK4). Impaired WNK4 ubiquitination plays a key role in Familial hyperkalemic hypertension (FHHt, also called pseudohypoaldosteronism type II) which results from overaction of thiazide-sensitive sodium chloride cotransport (NCC). In addition, researchers have also found that dietary potassium deficiency activates NCC along the renal distal convoluted tubule (DCT). However, the underlying mechanism remains unclear about the relationship between potassium and WNK4. METHODS: In the present study, we conducted in vitro and in vivo experiments to confirm that KLHL3-dependent WNK4 degradation is affected by potassium through the neddylation and autophagy pathway. In vitro, the WNK4 and KLHL3 plasmids were cotransfected into HEK293 cell lines by lipofectamine 2000, and then incubated with different potassium concentrations (1mmol/L and 10mmol/L) for 24 h, and further treated with MLN4924 or the autophagy inhibitor or both of MLN4924 and the autophagy inhibitor for another 24 h respectively. In vivo, we created mice that were fed with low or high potassium diets and then were injected MLN4924 in the experimental groups. The expression of WNK4, pWNK4, KLHL3, NEDD8, LC3 ,and P62 was detected by western blotting in vitro and vivo experiments. RESULTS: We found that the abundance and phosphorylation of WNK4 increase when neddylation is inhibited both in vitro and vivo. Furthermore, the abundance of pWNK4, WNK4, NEDD8, and KLHL3 was increased in the low potassium (LK) group. Inhibiting autophagy can ameliorate the effect of potassium on the abundance and activity of WNK4 to some extent. CONCLUSION: These findings suggest a complex regulation of potassium in the degradation of WNK4. Low potassium can activate WNK4, which may be related to neddylation and autophagy, but the mechanism needs to be further studied.


Subject(s)
Autophagy , Potassium , Animals , Humans , Mice , Adaptor Proteins, Signal Transducing , HEK293 Cells , Kidney Tubules, Distal , Microfilament Proteins , Protein Serine-Threonine Kinases/genetics
18.
BMC Health Serv Res ; 23(1): 497, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37194042

ABSTRACT

BACKGROUND: Venous access devices commonly used in clinical practice for long-term chemotherapy of breast cancer include central venous catheters (CVCs), peripherally inserted central venous catheters (PICCs), and implantable venous access ports (IVAPs). CVCs and PICCs are less costly to place but have a higher complication rate than IVAPs. However, there is a lack of cost-utility comparisons among the three devices. The aim of this study was to assess the cost-effectiveness of three catheters for long-term chemotherapy in breast cancer patients. METHODS: This study used propensity score matching (PSM) to establish a retrospective cohort. Decision tree models were used to compare the cost-effectiveness of three different intravenous lines in breast cancer chemotherapy patients. Cost parameters were derived from data extracted from the outpatient and inpatient charging systems, and total costs included costs of placement, maintenance, extraction, and handling of complications; utility parameters were derived from previous cross-sectional survey results of the research group; and complication rates were derived from breast cancer catheterization patient information as well as follow-up information. Quality-adjusted life years (QALYs) were measured for efficacy outcomes. Incremental cost-effectiveness ratios (ICERs) were used to compare the three strategies. To assess uncertainty in model parameters, sensitivity analyses (univariate sensitivity analysis and probabilistic sensitivity analysis) were performed. RESULTS: A total of 10,718 patients (3780 after propensity score matching) were included. IVAPs had the smallest cost-utility ratio, and PICCs had the largest cost-utility ratio when left in place for more than 12 months. The incremental cost-utility ratio of PICC to CVC was $2375.08/QALY, IVAP to PICC was $522.01/QALY, and IVAP to CVC was $612.98/QALY. Incremental cost-effectiveness ratios showed that IVAPs were more effective than CVCs and PICCs. Model regression analysis showed that the IVAP was recommended as the best regimen regardless of the catheter indwelling time (6 months, 12 months or more than 12 months). The reliability and stability of the model were verified by single-factor sensitivity analysis and Monte Carlo simulation (probabilistic sensitivity analysis). CONCLUSION: This study provides economic evidence for the selection of vascular access in breast cancer chemotherapy patients. In the case of limited resources in China, establishing a decision tree model comparing the cost-effectiveness of three vascular access devices for breast cancer chemotherapy patients determined that the IVAP was the most cost-effective regimen.


Subject(s)
Breast Neoplasms , Catheterization, Central Venous , Humans , Female , Cost-Benefit Analysis , Breast Neoplasms/drug therapy , Retrospective Studies , Cross-Sectional Studies , Reproducibility of Results
19.
BMC Musculoskelet Disord ; 24(1): 71, 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36707814

ABSTRACT

BACKGROUND: Balance training is the first choice of treatment for chronic ankle instability (CAI). However, there is a lack of research on the effects of balance training in CAI with generalized joint hypermobility (GJH). This study is to compare the outcomes of balance training in CAI patients with and without GJH. METHODS: Forty CAI patients were assigned into the GJH group (Beighton ≥ 4, 20) and non-GJH group (Beighton < 4, 20) and they received same 3-month supervised balance training. Repeated measure ANOVA and independent t test were used to analyze self-reported questionnaires (Foot and ankle ability measure, FAAM), the number of patients experiencing ankle sprain, isokinetic muscle strength and postural control tests (Star excursion balance test, SEBT and Balance errors system, BES) before training, post-training immediately, and post-training 3 months, respectively. RESULTS: At baseline, no differences were found between groups with except for GJH group having poorer SEBT in the posteromedial direction (83.6 ± 10.1 vs 92.8 ± 12.3, %) and in the posterolateral direction (84.7 ± 11.7 vs 95.7 ± 8.7, %). Following the balance training, GJH group demonstrated lower re-sprain ratio (immediately after training, 11.1% vs 23.5%, 3 month after training, 16.7% vs 29.4%) than non-GJH group, as well as greater FAAM-S score, plantarflexion strength and dorsiflexion strength at post-training immediately and 3 months, and both groups improved similarly in the FAAM-A score, muscle strength and balance control (SEBT in the posterior-lateral and posterior-medial directions, and BES scores) compared with baseline. CONCLUSIONS: CAI patients with GJH gained equally even better postural stability and muscle strength after the balance training than the non-GJH patients. Balance training could still be an effective treatment for CAI patients with GJH before considering surgery. TRIAL REGISTRATION: ChiCTR1900023999, June 21st, 2019.


Subject(s)
Ankle , Joint Instability , Humans , Joint Instability/diagnosis , Joint Instability/therapy , Prospective Studies , Range of Motion, Articular/physiology , Chronic Disease , Ankle Joint , Postural Balance/physiology
20.
Altern Ther Health Med ; 29(7): 444-446, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37535925

ABSTRACT

Background: Extravillous trophoblasts (EVTs) cells have shown promise for their application in non-invasive prenatal diagnosis during the first trimester. The Trophoblast Retrieval and Isolation from the Cervix (TRIC) method allows for the isolation of homogeneous trophoblast cells from pregnant women as early as 5 weeks gestation. Objective: This study aimed to explore the potential value of extravillous trophoblast cells collected from the cervix, enriched, and purified using the TRIC method for first-trimester prenatal diagnosis. Methods: A prospective observational study was conducted, and we collected extravillous trophoblast cells from the cervixes of 100 pregnant women between 5-7 weeks gestation before an induced abortion. Subsequently, these cells underwent STR analysis and fluorescence in situ hybridization (FISH). Results: Out of the 100 cases, trophoblast cells were successfully collected from 96 cases. Among them, STR analysis revealed maternal cell contamination in 13 cases. Gender determination using FISH showed 44 male cases (including one case with 47, XY, +21) and 39 female cases (including one case with 47, XXX). The results of the FISH examination of these 83 cases were in concordance with those of the villi FISH examination. Conclusions: The collection of fetal trophoblast cells from the cervix represents a feasible and non-invasive approach for first-trimester prenatal diagnosis. The TRIC method enables efficient enrichment and purification of trophoblast cells, which can be of significant benefit for subsequent diagnosis using the FISH method.


Subject(s)
Cervix Uteri , Trophoblasts , Pregnancy , Female , Humans , Male , In Situ Hybridization, Fluorescence , Prenatal Diagnosis/methods , Pregnancy Trimester, First
SELECTION OF CITATIONS
SEARCH DETAIL