Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters

Publication year range
1.
Neuroimage ; 296: 120681, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38857818

ABSTRACT

In response to Mazaheri et al.'s critique, we revisited our study (Valentini et al., 2022) on the relationship between peak alpha frequency (PAF) and pain. Their commentary prompted us to reassess our data to address the independence between slow and slowing alpha brain oscillations, as well as the predictivity of slow alpha oscillations in pain perception. Bayesian correlation analyses revealed mixed support for independence. Investigating predictivity, we found inconsistent associations between pre-PAF and unpleasantness ratings. We critically reflected on methodological and theoretical issues on the path to PAF validation as a pain biomarker. We emphasized the need for diversified methodology and analytical approaches as well as robust findings across research groups.


Subject(s)
Alpha Rhythm , Biomarkers , Pain , Humans , Alpha Rhythm/physiology , Pain/physiopathology , Pain Perception/physiology , Electroencephalography/methods , Bayes Theorem , Brain/physiology
2.
Neuroimage ; 255: 119143, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35378288

ABSTRACT

Recent research proposed that the slowing of individual alpha frequency (IAF) could be an objective marker of pain. However, it is unclear whether this research can fully address the requirements of specificity and sensitivity of IAF to the pain experience. Here, we sought to develop a robust methodology for assessing the specificity of the relationship between alpha oscillations and acute tonic pain in healthy individuals. We recorded electroencephalography (EEG) of 36 volunteers during consecutive 5-minute sessions of painful hot water immersion, innocuous warm water immersion and aversive, non-painful auditory stimulus, matched by unpleasantness to the painful condition. Participants rated stimulus unpleasantness throughout each condition. We isolated two regions of the scalp displaying peak alpha activity across participants: centro-parietal (CP) and parieto-occipital (PO) ROI. In line with previous research our findings revealed decreased IAF during hot compared with warm stimulation, however the effect was not specific for pain as we found no difference between hot and sound in the CP ROI (compared to baseline). In contrast, the PO ROI reported the same pattern of differences, but their direction was opposite to the CP in that this ROI revealed faster frequency during hot condition than controls. Finally, we show that IAF in both ROIs did not mediate the relationship between the experimental manipulation and the affective experience. Altogether, these findings emphasize the importance of a robust methodological and analytical design to disclose the functional role of alpha oscillations during affective processing. Likewise, they suggest the absence of a causal role of IAF in the generation of acute pain experience in healthy individuals.


Subject(s)
Electroencephalography , Pain , Brain , Electroencephalography/methods , Humans , Water
3.
Neuroimage ; 226: 117566, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33221442

ABSTRACT

BACKGROUND: In the Wada test, one hemisphere is selectively anaesthetised by unilateral intracarotid injection of a fast-acting anaesthetic agent. This gives a unique opportunity to observe the functions and physiological activity of one hemisphere while anaesthetising the other, allowing direct comparisons between brain states and hemispheres that are not possible in any other setting. AIM: To test whether potential measures of consciousness would be affected by selective anaesthesia of one hemisphere, and reliably distinguish the states of the anesthetised and non-anesthetised hemispheres. METHODS: We analysed EEG data from 7 patients undergoing Wada-tests in preparation for neurosurgery and computed several measures reported to correlate with the state of consciousness: power spectral density, functional connectivity, and measures of signal diversity. These measures were compared between conditions (normal rest vs. unilateral anaesthesia) and hemispheres (injected vs. non-injected), and used with a support vector machine to classify the state and site of injection objectively from individual patient's recordings. RESULTS: Although brain function, assessed behaviourally, appeared to be substantially altered only on the injected side, we found large bilateral changes in power spectral density for all frequency bands tested, and functional connectivity changed significantly both between and within both hemispheres. Surprisingly, we found no statistically significant differences in the measures of signal diversity between hemispheres or states, for the group of 7 patients, although 4 of the individual patients showed a significant decrease in signal diversity on the injected side. Nevertheless, including signal diversity measures improved the classification results, indicating that these measures carry at least some non-redundant information about the condition and injection site. We propose that several of these results may be explained by conduction of activity, via the corpus callosum, from the injected to the contralateral hemisphere and vice versa, without substantially affecting the function of the receiving hemisphere, thus reflecting what we call "cross-state unreceptiveness".


Subject(s)
Anesthesia , Anesthetics, Intravenous , Carotid Artery, Internal , Consciousness/physiology , Electroencephalography , Etomidate , Functional Laterality/physiology , Adult , Drug Resistant Epilepsy/surgery , Epilepsy, Temporal Lobe/surgery , Female , Humans , Injections, Intra-Arterial , Male , Middle Aged , Neurosurgical Procedures , Preoperative Care
4.
Hum Brain Mapp ; 40(8): 2399-2412, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30693612

ABSTRACT

Effective use of brain-computer interfaces (BCIs) typically requires training. Improved understanding of the neural mechanisms underlying BCI training will facilitate optimisation of BCIs. The current study examined the neural mechanisms related to training for electroencephalography (EEG)-based communication with an auditory event-related potential (ERP) BCI. Neural mechanisms of training in 10 healthy volunteers were assessed with functional magnetic resonance imaging (fMRI) during an auditory ERP-based BCI task before (t1) and after (t5) three ERP-BCI training sessions outside the fMRI scanner (t2, t3, and t4). Attended stimuli were contrasted with ignored stimuli in the first-level fMRI data analysis (t1 and t5); the training effect was verified using the EEG data (t2-t4); and brain activation was contrasted before and after training in the second-level fMRI data analysis (t1 vs. t5). Training increased the communication speed from 2.9 bits/min (t2) to 4 bits/min (t4). Strong activation was found in the putamen, supplementary motor area (SMA), and superior temporal gyrus (STG) associated with attention to the stimuli. Training led to decreased activation in the superior frontal gyrus and stronger haemodynamic rebound in the STG and supramarginal gyrus. The neural mechanisms of ERP-BCI training indicate improved stimulus perception and reduced mental workload. The ERP task used in the current study showed overlapping activations with a motor imagery based BCI task from a previous study on the neural mechanisms of BCI training in the SMA and putamen. This suggests commonalities between the neural mechanisms of training for both BCI paradigms.


Subject(s)
Attention/physiology , Auditory Perception/physiology , Brain-Computer Interfaces , Cerebral Cortex/physiopathology , Electroencephalography , Event-Related Potentials, P300/physiology , Evoked Potentials, Auditory/physiology , Functional Neuroimaging , Parietal Lobe/diagnostic imaging , Practice, Psychological , Prefrontal Cortex/physiology , Putamen/physiology , Adult , Cerebral Cortex/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Male , Motor Cortex/diagnostic imaging , Motor Cortex/physiology , Parietal Lobe/physiology , Prefrontal Cortex/diagnostic imaging , Putamen/diagnostic imaging , Temporal Lobe/diagnostic imaging , Temporal Lobe/physiology , Young Adult
5.
J Neuroeng Rehabil ; 12: 76, 2015 Sep 04.
Article in English | MEDLINE | ID: mdl-26338101

ABSTRACT

BACKGROUND: In this study, we evaluated electrooculography (EOG), an eye tracker and an auditory brain-computer interface (BCI) as access methods to augmentative and alternative communication (AAC). The participant of the study has been in the locked-in state (LIS) for 6 years due to amyotrophic lateral sclerosis. He was able to communicate with slow residual eye movements, but had no means of partner independent communication. We discuss the usability of all tested access methods and the prospects of using BCIs as an assistive technology. METHODS: Within four days, we tested whether EOG, eye tracking and a BCI would allow the participant in LIS to make simple selections. We optimized the parameters in an iterative procedure for all systems. RESULTS: The participant was able to gain control over all three systems. Nonetheless, due to the level of proficiency previously achieved with his low-tech AAC method, he did not consider using any of the tested systems as an additional communication channel. However, he would consider using the BCI once control over his eye muscles would no longer be possible. He rated the ease of use of the BCI as the highest among the tested systems, because no precise eye movements were required; but also as the most tiring, due to the high level of attention needed to operate the BCI. CONCLUSIONS: In this case study, the partner based communication was possible due to the good care provided and the proficiency achieved by the interlocutors. To ease the transition from a low-tech AAC method to a BCI once control over all muscles is lost, it must be simple to operate. For persons, who rely on AAC and are affected by a progressive neuromuscular disease, we argue that a complementary approach, combining BCIs and standard assistive technology, can prove valuable to achieve partner independent communication and ease the transition to a purely BCI based approach. Finally, we provide further evidence for the importance of a user-centered approach in the design of new assistive devices.


Subject(s)
Brain-Computer Interfaces , Communication Aids for Disabled , Electrooculography/methods , Eye Movements/physiology , Psychomotor Performance/physiology , Quadriplegia/rehabilitation , Amyotrophic Lateral Sclerosis/rehabilitation , Caregivers/psychology , Electrodes, Implanted , Electroencephalography , Humans , Male , Middle Aged , Oculomotor Muscles/physiology , Patient Satisfaction , Quadriplegia/psychology , Self-Help Devices
6.
ScientificWorldJournal ; 2015: 623896, 2015.
Article in English | MEDLINE | ID: mdl-26167530

ABSTRACT

The novel BackHome system offers individuals with disabilities a range of useful services available via brain-computer interfaces (BCIs), to help restore their independence. This is the time such technology is ready to be deployed in the real world, that is, at the target end users' home. This has been achieved by the development of practical electrodes, easy to use software, and delivering telemonitoring and home support capabilities which have been conceived, implemented, and tested within a user-centred design approach. The final BackHome system is the result of a 3-year long process involving extensive user engagement to maximize effectiveness, reliability, robustness, and ease of use of a home based BCI system. The system is comprised of ergonomic and hassle-free BCI equipment; one-click software services for Smart Home control, cognitive stimulation, and web browsing; and remote telemonitoring and home support tools to enable independent home use for nonexpert caregivers and users. BackHome aims to successfully bring BCIs to the home of people with limited mobility to restore their independence and ultimately improve their quality of life.


Subject(s)
Brain-Computer Interfaces , Computer Systems , Disabled Persons , Electrodes , Electroencephalography , Humans , Internet , Software , Telerehabilitation , User-Computer Interface , Wireless Technology
7.
Brain ; 136(Pt 6): 1989-2000, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23625062

ABSTRACT

Patients in the completely locked-in state have no means of communication and they represent the target population for brain-computer interface research in the last 15 years. Although different paradigms have been tested and different physiological signals used, to date no sufficiently documented completely locked-in state patient was able to control a brain-computer interface over an extended time period. We introduce Pavlovian semantic conditioning to enable basic communication in completely locked-in state. This novel paradigm is based on semantic conditioning for online classification of neuroelectric or any other physiological signals to discriminate between covert (cognitive) 'yes' and 'no' responses. The paradigm comprised the presentation of affirmative and negative statements used as conditioned stimuli, while the unconditioned stimulus consisted of electrical stimulation of the skin paired with affirmative statements. Three patients with advanced amyotrophic lateral sclerosis participated over an extended time period, one of which was in a completely locked-in state, the other two in the locked-in state. The patients' level of vigilance was assessed through auditory oddball procedures to study the correlation between vigilance level and the classifier's performance. The average online classification accuracies of slow cortical components of electroencephalographic signals were around chance level for all the patients. The use of a non-linear classifier in the offline classification procedure resulted in a substantial improvement of the accuracy in one locked-in state patient achieving 70% correct classification. A reliable level of performance in the completely locked-in state patient was not achieved uniformly throughout the 37 sessions despite intact cognitive processing capacity, but in some sessions communication accuracies up to 70% were achieved. Paradigm modifications are proposed. Rapid drop of vigilance was detected suggesting attentional variations or variations of circadian period as important factors in brain-computer interface communication with locked-in state and completely locked-in state.


Subject(s)
Brain/physiology , Quadriplegia/diagnosis , Quadriplegia/physiopathology , Adult , Aged , Brain/pathology , Conditioning, Psychological/physiology , Electroencephalography/methods , Female , Humans , Male , Quadriplegia/psychology
8.
Article in English | MEDLINE | ID: mdl-38083495

ABSTRACT

Cross-individual pain assessment models based on electroencephalography (EEG) allow pain assessment in individuals who cannot report pain (e.g., unresponsive patients). The main obstacle to the generalisation of pain assessment models is the individual variation of brain responses to pain. Hence, we took the individual variation into account in cross-individual model development. We developed two convolutional neural networks (CNN) sharing an encoder architecture. One CNN predicts pain, while the other predicts the identity of an individual. We performed a leave-one-out (LOO) test with the exclusion of each subject and applied evidence accumulation to it for validating the pain prediction model's performance, where the binary classifier involves the states of pain (Hot) and resting state (Eyes-open). The mean accuracy produced by the LOO tests was 57.81% (max: 73.33%), and the mean accuracy of evidence accumulation achieved 69.75% (max: 100.00%). The individual recognition model achieved an accuracy of 99.63%. Nevertheless, when we acquired the most similar subject to a novel subject using the individual recognition model, where the most similar subject was used to train a subject-wise pain prediction model. The accuracy of predicting the pain-related conditions of the novel subject by the subject-wise model was only 53.73% (max: 79.50%). Therefore, the approach to utilising the features related to individual variation extracted by the CNN model needs more investigation for improving cross-individual pain assessment.Clinical relevance- This model can be applied to assess pain from EEG signals at the bedside with future improvement, which can help caretakers of unresponsive patients.


Subject(s)
Electroencephalography , Recognition, Psychology , Humans , Pain Measurement , Brain , Pain/diagnosis
9.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3542-3545, 2022 07.
Article in English | MEDLINE | ID: mdl-36086245

ABSTRACT

The complexity of brain activity involved in the generation of the experience of pain makes it hard to identify neural markers able to predict pain states. The within and between subjects variability of pain hinders the predictive potential of machine learning models trained across participants. This challenge can be tackled by implementing deep learning classifiers based on convolutional neural networks (CNNs). We targeted phase-based connectivity in the alpha band recorded with electroencephalography (EEG) during resting states and sensory conditions (eyes open [O] and closed [C] as resting states, and warm [W] and hot [H] water as sensory conditions). Connectivity features were extracted and re-organized as square matrices, because CNNs are effective in detecting the patterns from 2D data. To assess the classifier performance we implemented two complementary approaches: we 1) trained and tested the classifier with data from all participants, and 2) using a leave-one-out approach, that is excluding one participant at a time during training while using their data as a test set. The accuracy of binary classification between pain condition (H) and eyes open resting state (O) was 94.16% with the first approach, and 61.01 % with the leave-one-out approach. Clinical relevance-Further validation of the CNN classifier may help caregivers track the rehabilitation of chronic pain patients and dynamically modify the therapy. Further refinement of the model may allow its application in critical care setting with unresponsive patients to identify pain-like states otherwise incommunicable to medical personnel.


Subject(s)
Electroencephalography , Neural Networks, Computer , Humans , Machine Learning , Pain/diagnosis
10.
Article in English | MEDLINE | ID: mdl-36908334

ABSTRACT

The Eighth International Brain-Computer Interface (BCI) Meeting was held June 7-9th, 2021 in a virtual format. The conference continued the BCI Meeting series' interactive nature with 21 workshops covering topics in BCI (also called brain-machine interface) research. As in the past, workshops covered the breadth of topics in BCI. Some workshops provided detailed examinations of specific methods, hardware, or processes. Others focused on specific BCI applications or user groups. Several workshops continued consensus building efforts designed to create BCI standards and increase the ease of comparisons between studies and the potential for meta-analysis and large multi-site clinical trials. Ethical and translational considerations were both the primary topic for some workshops or an important secondary consideration for others. The range of BCI applications continues to expand, with more workshops focusing on approaches that can extend beyond the needs of those with physical impairments. This paper summarizes each workshop, provides background information and references for further study, presents an overview of the discussion topics, and describes the conclusion, challenges, or initiatives that resulted from the interactions and discussion at the workshop.

11.
Neuroimage ; 51(4): 1303-9, 2010 Jul 15.
Article in English | MEDLINE | ID: mdl-20303409

ABSTRACT

Brain-computer interfaces (BCIs) allow a user to control a computer application by brain activity as measured, e.g., by electroencephalography (EEG). After about 30years of BCI research, the success of control that is achieved by means of a BCI system still greatly varies between subjects. For about 20% of potential users the obtained accuracy does not reach the level criterion, meaning that BCI control is not accurate enough to control an application. The determination of factors that may serve to predict BCI performance, and the development of methods to quantify a predictor value from psychological and/or physiological data serve two purposes: a better understanding of the 'BCI-illiteracy phenomenon', and avoidance of a costly and eventually frustrating training procedure for participants who might not obtain BCI control. Furthermore, such predictors may lead to approaches to antagonize BCI illiteracy. Here, we propose a neurophysiological predictor of BCI performance which can be determined from a two minute recording of a 'relax with eyes open' condition using two Laplacian EEG channels. A correlation of r=0.53 between the proposed predictor and BCI feedback performance was obtained on a large data base with N=80 BCI-naive participants in their first session with the Berlin brain-computer interface (BBCI) system which operates on modulations of sensory motor rhythms (SMRs).


Subject(s)
Electroencephalography , Motor Cortex/physiology , Somatosensory Cortex/physiology , User-Computer Interface , Adult , Algorithms , Artifacts , Biofeedback, Psychology , Calibration , Computer Literacy , Cues , Data Interpretation, Statistical , Female , Functional Laterality/physiology , Hand/innervation , Hand/physiology , Humans , Male , Photic Stimulation , Psychomotor Performance/physiology
12.
Hum Brain Mapp ; 31(10): 1502-11, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20112242

ABSTRACT

There is a growing interest in using support vector machines (SVMs) to classify and analyze fMRI signals, leading to a wide variety of applications ranging from brain state decoding to functional mapping of spatially and temporally distributed brain activations. Studies so far have generated functional maps using the vector of weight values generated by the SVM classification process, or alternatively by mapping the correlation coefficient between the fMRI signal at each voxel and the brain state determined by the SVM. However, these approaches are limited as they do not incorporate both the information involved in the SVM prediction of a brain state, namely, the BOLD activation at voxels and the degree of involvement of different voxels as indicated by their weight values. An important implication of the above point is that two different datasets of BOLD signals, presumably obtained from two different experiments, can potentially produce two identical hyperplanes irrespective of their differences in data distribution. Yet, the two sets of signal inputs could correspond to different functional maps. With this consideration, we propose a new method called Effect Mapping that is generated as a product of the weight vector and a newly computed vector of mutual information between BOLD activations at each voxel and the SVM output. By applying this method on neuroimaging data of overt motor execution in nine healthy volunteers, we demonstrate higher decoding accuracy indicating the greater efficacy of this method.


Subject(s)
Brain Mapping/methods , Brain/physiology , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Adult , Humans , Motor Activity/physiology , Young Adult
13.
Brain Topogr ; 23(2): 186-93, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20162347

ABSTRACT

One crucial question in the design of electroencephalogram (EEG)-based brain-computer interface (BCI) experiments is the selection of EEG channels. While a setup with few channels is more convenient and requires less preparation time, a dense placement of electrodes provides more detailed information and henceforth could lead to a better classification performance. Here, we investigate this question for a specific setting: a BCI that uses the popular CSP algorithm in order to classify voluntary modulations of sensorimotor rhythms (SMR). In a first approach 13 different fixed channel configurations are compared to the full one consisting of 119 channels. The configuration with 48 channels results to be the best one, while configurations with less channels, from 32 to 8, performed not significantly worse than the best configuration in cases where only few training trials are available. In a second approach an optimal channel configuration is obtained by an iterative procedure in the spirit of stepwise variable selection with nonparametric multiple comparisons. As a surprising result, in the second approach a setting with 22 channels centered over the motor areas was selected. Thanks to the acquisition of a large data set recorded from 80 novice participants using 119 EEG channels, the results of this study can be expected to have a high degree of generalizability.


Subject(s)
Brain/physiology , Electroencephalography/instrumentation , Electroencephalography/methods , User-Computer Interface , Adult , Algorithms , Feedback , Female , Humans , Imagination/physiology , Male , Motor Activity/physiology , Motor Cortex/physiology , Signal Processing, Computer-Assisted
14.
Front Hum Neurosci ; 12: 228, 2018.
Article in English | MEDLINE | ID: mdl-29928196

ABSTRACT

Severe motor impairments can affect the ability to communicate. The ability to see has a decisive influence on the augmentative and alternative communication (AAC) systems available to the user. To better understand the initial impressions users have of AAC systems we asked naïve healthy participants to compare two visual (a visual P300 brain-computer interface (BCI) and an eye-tracker) and two non-visual systems (an auditory and a tactile P300 BCI). Eleven healthy participants performed 20 selections in a five choice task with each system. The visual P300 BCI used face stimuli, the auditory P300 BCI used Japanese Hiragana syllables and the tactile P300 BCI used a stimulator on the small left finger, middle left finger, right thumb, middle right finger and small right finger. The eye-tracker required a dwell time of 3 s on the target for selection. We calculated accuracies and information-transfer rates (ITRs) for each control method using the selection time that yielded the highest ITR and an accuracy above 70% for each system. Accuracies of 88% were achieved with the visual P300 BCI (4.8 s selection time, 20.9 bits/min), of 70% with the auditory BCI (19.9 s, 3.3 bits/min), of 71% with the tactile BCI (18 s, 3.4 bits/min) and of 100% with the eye-tracker (5.1 s, 28.2 bits/min). Performance between eye-tracker and visual BCI correlated strongly, correlation between tactile and auditory BCI performance was lower. Our data showed no advantage for either non-visual system in terms of ITR but a lower correlation of performance which suggests that choosing the system which suits a particular user is of higher importance for non-visual systems than visual systems.

15.
Front Neurosci ; 12: 307, 2018.
Article in English | MEDLINE | ID: mdl-29867319

ABSTRACT

Brain-Computer Interfaces (BCIs) provide communication channels independent from muscular control. In the current study we used two versions of the P300-BCI: one based on visual the other on auditory stimulation. Up to now, data on the impact of psychological variables on P300-BCI control are scarce. Hence, our goal was to identify new predictors with a comprehensive psychological test-battery. A total of N = 40 healthy BCI novices took part in a visual and an auditory BCI session. Psychological variables were measured with an electronic test-battery including clinical, personality, and performance tests. The personality factor "emotional stability" was negatively correlated (Spearman's rho = -0.416; p < 0.01) and an output variable of the non-verbal learning test (NVLT), which can be interpreted as ability to learn, correlated positively (Spearman's rho = 0.412; p < 0.01) with visual P300-BCI performance. In a linear regression analysis both independent variables explained 24% of the variance. "Emotional stability" was also negatively related to auditory P300-BCI performance (Spearman's rho = -0.377; p < 0.05), but failed significance in the regression analysis. Psychological parameters seem to play a moderate role in visual P300-BCI performance. "Emotional stability" was identified as a new predictor, indicating that BCI users who characterize themselves as calm and rational showed worse BCI performance. The positive relation of the ability to learn and BCI performance corroborates the notion that also for P300 based BCIs learning may constitute an important factor. Further studies are needed to consolidate or reject the presented predictors.

16.
Front Neurosci ; 11: 286, 2017.
Article in English | MEDLINE | ID: mdl-28588442

ABSTRACT

Current brain-computer interface (BCIs) software is often tailored to the needs of scientists and technicians and therefore complex to allow for versatile use. To facilitate home use of BCIs a multifunctional P300 BCI with a graphical user interface intended for non-expert set-up and control was designed and implemented. The system includes applications for spelling, web access, entertainment, artistic expression and environmental control. In addition to new software, it also includes new hardware for the recording of electroencephalogram (EEG) signals. The EEG system consists of a small and wireless amplifier attached to a cap that can be equipped with gel-based or dry contact electrodes. The system was systematically evaluated with a healthy sample, and targeted end users of BCI technology, i.e., people with a varying degree of motor impairment tested the BCI in a series of individual case studies. Usability was assessed in terms of effectiveness, efficiency and satisfaction. Feedback of users was gathered with structured questionnaires. Two groups of healthy participants completed an experimental protocol with the gel-based and the dry contact electrodes (N = 10 each). The results demonstrated that all healthy participants gained control over the system and achieved satisfactory to high accuracies with both gel-based and dry electrodes (average error rates of 6 and 13%). Average satisfaction ratings were high, but certain aspects of the system such as the wearing comfort of the dry electrodes and design of the cap, and speed (in both groups) were criticized by some participants. Six potential end users tested the system during supervised sessions. The achieved accuracies varied greatly from no control to high control with accuracies comparable to that of healthy volunteers. Satisfaction ratings of the two end-users that gained control of the system were lower as compared to healthy participants. The advantages and disadvantages of the BCI and its applications are discussed and suggestions are presented for improvements to pave the way for user friendly BCIs intended to be used as assistive technology by persons with severe paralysis.

17.
Front Neurosci ; 10: 446, 2016.
Article in English | MEDLINE | ID: mdl-27746716

ABSTRACT

Gaze-independent brain-computer interfaces (BCIs) are a possible communication channel for persons with paralysis. We investigated if it is possible to use auditory stimuli to create a BCI for the Japanese Hiragana syllabary, which has 46 Hiragana characters. Additionally, we investigated if training has an effect on accuracy despite the high amount of different stimuli involved. Able-bodied participants (N = 6) were asked to select 25 syllables (out of fifty possible choices) using a two step procedure: First the consonant (ten choices) and then the vowel (five choices). This was repeated on 3 separate days. Additionally, a person with spinal cord injury (SCI) participated in the experiment. Four out of six healthy participants reached Hiragana syllable accuracies above 70% and the information transfer rate increased from 1.7 bits/min in the first session to 3.2 bits/min in the third session. The accuracy of the participant with SCI increased from 12% (0.2 bits/min) to 56% (2 bits/min) in session three. Reliable selections from a 10 × 5 matrix using auditory stimuli were possible and performance is increased by training. We were able to show that auditory P300 BCIs can be used for communication with up to fifty symbols. This enables the use of the technology of auditory P300 BCIs with a variety of applications.

18.
Front Neurosci ; 9: 207, 2015.
Article in English | MEDLINE | ID: mdl-26097447

ABSTRACT

Visual ERP (P300) based brain-computer interfaces (BCIs) allow for fast and reliable spelling and are intended as a muscle-independent communication channel for people with severe paralysis. However, they require the presentation of visual stimuli in the field of view of the user. A head-mounted display could allow convenient presentation of visual stimuli in situations, where mounting a conventional monitor might be difficult or not feasible (e.g., at a patient's bedside). To explore if similar accuracies can be achieved with a virtual reality (VR) headset compared to a conventional flat screen monitor, we conducted an experiment with 18 healthy participants. We also evaluated it with a person in the locked-in state (LIS) to verify that usage of the headset is possible for a severely paralyzed person. Healthy participants performed online spelling with three different display methods. In one condition a 5 × 5 letter matrix was presented on a conventional 22 inch TFT monitor. Two configurations of the VR headset were tested. In the first (glasses A), the same 5 × 5 matrix filled the field of view of the user. In the second (glasses B), single letters of the matrix filled the field of view of the user. The participant in the LIS tested the VR headset on three different occasions (glasses A condition only). For healthy participants, average online spelling accuracies were 94% (15.5 bits/min) using three flash sequences for spelling with the monitor and glasses A and 96% (16.2 bits/min) with glasses B. In one session, the participant in the LIS reached an online spelling accuracy of 100% (10 bits/min) using the glasses A condition. We also demonstrated that spelling with one flash sequence is possible with the VR headset for healthy users (mean: 32.1 bits/min, maximum reached by one user: 71.89 bits/min at 100% accuracy). We conclude that the VR headset allows for rapid P300 BCI communication in healthy users and may be a suitable display option for severely paralyzed persons.

19.
J Neural Eng ; 12(1): 014001, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25587889

ABSTRACT

OBJECTIVE: Brain-computer interfaces (BCI) based on event-related potentials (ERP) were proven to be a reliable synchronous communication method. For everyday life situations, however, this synchronous mode is impractical because the system will deliver a selection even if the user is not paying attention to the stimulation. So far, research into attention-aware visual ERP-BCIs (i.e., asynchronous ERP-BCIs) has led to variable success. In this study, we investigate new approaches for detection of user engagement. APPROACH: Classifier output and frequency-domain features of electroencephalogram signals as well as the hybridization of them were used to detect the user's state. We tested their capabilities for state detection in different control scenarios on offline data from 21 healthy volunteers. MAIN RESULTS: The hybridization of classifier output and frequency-domain features outperformed the results of the single methods, and allowed building an asynchronous P300-based BCI with an average correct state detection accuracy of more than 95%. SIGNIFICANCE: Our results show that all introduced approaches for state detection in an asynchronous P300-based BCI can effectively avoid involuntary selections, and that the hybrid method is the most effective approach.


Subject(s)
Brain-Computer Interfaces , Electroencephalography/methods , Event-Related Potentials, P300/physiology , Evoked Potentials, Visual/physiology , Pattern Recognition, Automated/methods , Visual Cortex/physiology , Adult , Algorithms , Female , Humans , Male , Reproducibility of Results , Sensitivity and Specificity , Young Adult
20.
Neurorehabil Neural Repair ; 29(10): 950-7, 2015.
Article in English | MEDLINE | ID: mdl-25753951

ABSTRACT

BACKGROUND: Eye trackers are widely used among people with amyotrophic lateral sclerosis, and their benefits to quality of life have been previously shown. On the contrary, Brain-computer interfaces (BCIs) are still quite a novel technology, which also serves as an access technology for people with severe motor impairment. OBJECTIVE: To compare a visual P300-based BCI and an eye tracker in terms of information transfer rate (ITR), usability, and cognitive workload in users with motor impairments. METHODS: Each participant performed 3 spelling tasks, over 4 total sessions, using an Internet browser, which was controlled by a spelling interface that was suitable for use with either the BCI or the eye tracker. At the end of each session, participants evaluated usability and cognitive workload of the system. RESULTS: ITR and System Usability Scale (SUS) score were higher for the eye tracker (Wilcoxon signed-rank test: ITR T = 9, P = .016; SUS T = 12.50, P = .035). Cognitive workload was higher for the BCI (T = 4; P = .003). CONCLUSIONS: Although BCIs could be potentially useful for people with severe physical disabilities, we showed that the usability of BCIs based on the visual P300 remains inferior to eye tracking. We suggest that future research on visual BCIs should use eye tracking-based control as a comparison to evaluate performance or focus on nonvisual paradigms for persons who have lost gaze control.


Subject(s)
Brain-Computer Interfaces , Disability Evaluation , Eye Movements/physiology , Motor Disorders/complications , Motor Disorders/diagnosis , Workload , Adult , Aged , Electroencephalography , Event-Related Potentials, P300/physiology , Female , Humans , Male , Middle Aged , Neuropsychological Tests , Statistics, Nonparametric , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL