Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Circ Res ; 120(5): 835-847, 2017 Mar 03.
Article in English | MEDLINE | ID: mdl-27920122

ABSTRACT

RATIONALE: Heart failure and atherosclerosis share the underlying mechanisms of chronic inflammation followed by fibrosis. A highly conserved microRNA (miR), miR-33, is considered as a potential therapeutic target for atherosclerosis because it regulates lipid metabolism and inflammation. However, the role of miR-33 in heart failure remains to be elucidated. OBJECTIVE: To clarify the role of miR-33 involved in heart failure. METHODS AND RESULTS: We first investigated the expression levels of miR-33a/b in human cardiac tissue samples with dilated cardiomyopathy. Increased expression of miR-33a was associated with improving hemodynamic parameters. To clarify the role of miR-33 in remodeling hearts, we investigated the responses to pressure overload by transverse aortic constriction in miR-33-deficient (knockout [KO]) mice. When mice were subjected to transverse aortic constriction, miR-33 expression levels were significantly upregulated in wild-type left ventricles. There was no difference in hypertrophic responses between wild-type and miR-33KO hearts, whereas cardiac fibrosis was ameliorated in miR-33KO hearts compared with wild-type hearts. Despite the ameliorated cardiac fibrosis, miR-33KO mice showed impaired systolic function after transverse aortic constriction. We also found that cardiac fibroblasts were mainly responsible for miR-33 expression in the heart. Deficiency of miR-33 impaired cardiac fibroblast proliferation, which was considered to be caused by altered lipid raft cholesterol content. Moreover, cardiac fibroblast-specific miR-33-deficient mice also showed decreased cardiac fibrosis induced by transverse aortic constriction as systemic miR-33KO mice. CONCLUSION: Our results demonstrate that miR-33 is involved in cardiac remodeling, and it preserves lipid raft cholesterol content in fibroblasts and maintains adaptive fibrotic responses in the remodeling heart.


Subject(s)
Cholesterol/metabolism , Membrane Microdomains/metabolism , MicroRNAs/metabolism , Myocardium/metabolism , Myocardium/pathology , Ventricular Remodeling/physiology , Adult , Aged , Animals , Cells, Cultured , Female , Fibroblasts/metabolism , Fibroblasts/physiology , Fibrosis/metabolism , Fibrosis/pathology , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Middle Aged , Rats , Rats, Sprague-Dawley
2.
Arterioscler Thromb Vasc Biol ; 38(10): 2460-2473, 2018 10.
Article in English | MEDLINE | ID: mdl-30354203

ABSTRACT

Objective- Atherosclerosis is a common disease caused by a variety of metabolic and inflammatory disturbances. MicroRNA (miR)-33a within SREBF2 (sterol regulatory element-binding factor 2) is a potent target for treatment of atherosclerosis through regulating both aspects; however, the involvement of miR-33b within SREBF1 remains largely unknown. Although their host genes difference could lead to functional divergence of miR-33a/b, we cannot dissect the roles of miR-33a/b in vivo because of lack of miR-33b sequences in mice, unlike human. Approach and Results- Here, we analyzed the development of atherosclerosis using miR-33b knock-in humanized mice under apolipoprotein E-deficient background. MiR-33b is prominent both in human and mice on atheroprone condition. MiR-33b reduced serum high-density lipoprotein cholesterol levels and systemic reverse cholesterol transport. MiR-33b knock-in macrophages showed less cholesterol efflux capacity and higher inflammatory state via regulating lipid rafts. Thus, miR-33b promotes vulnerable atherosclerotic plaque formation. Furthermore, bone marrow transplantation experiments strengthen proatherogenic roles of macrophage miR-33b. Conclusions- Our data demonstrated critical roles of SREBF1-miR-33b axis on both lipid profiles and macrophage phenotype remodeling and indicate that miR-33b is a promising target for treating atherosclerosis.


Subject(s)
Atherosclerosis/metabolism , MicroRNAs/metabolism , Plaque, Atherosclerotic , Sterol Regulatory Element Binding Protein 1/metabolism , Aged , Aged, 80 and over , Animals , Apoptosis , Atherosclerosis/genetics , Atherosclerosis/pathology , Bone Marrow Transplantation , Case-Control Studies , Cholesterol, HDL/blood , Disease Models, Animal , Female , Gene Expression Regulation , Humans , Intestinal Absorption , Macrophages/metabolism , Macrophages/pathology , Male , Membrane Microdomains/metabolism , Mice, Inbred C57BL , Mice, Knockout, ApoE , MicroRNAs/genetics , Middle Aged , Phenotype , Signal Transduction , Sterol Regulatory Element Binding Protein 1/genetics , Triglycerides/blood
3.
Mol Cell Biol ; 38(14)2018 07 15.
Article in English | MEDLINE | ID: mdl-29712758

ABSTRACT

MicroRNA 33 (miR-33) targets ATP-binding cassette transporter A1 (ABCA1), and its deficiency increases serum high-density lipoprotein (HDL)-cholesterol (HDL-C) and ameliorates atherosclerosis. Although we previously reported that miR-33 deficiency increased peripheral Ly6Chigh monocytes on an ApoE-deficient background, the effect of miR-33 on the monocyte population has not been fully elucidated, especially in a wild-type (WT) background. We found that Ly6Chigh monocytes in miR-33-/- mice were decreased in peripheral blood and increased in bone marrow (BM). Expansion of myeloid progenitors and decreased apoptosis in Lin- Sca1+ c-Kit+ (LSK) cells were observed in miR-33-/- mice. A BM transplantation study and competitive repopulation assay revealed that hematopoietic miR-33 deficiency caused myeloid expansion and increased peripheral Ly6Chigh monocytes and that nonhematopoietic miR-33 deficiency caused reduced peripheral Ly6Chigh monocytes. Expression of high-mobility group AT-hook 2 (HMGA2) targeted by miR-33 increased in miR-33-deficient LSK cells, and its knockdown abolished the reduction of apoptosis. Transduction of human apolipoprotein A1 and ABCA1 in WT mouse liver increased HDL-C and reduced peripheral Ly6Chigh monocytes. These data indicate that miR-33 deficiency affects distribution of inflammatory monocytes through dual pathways. One pathway involves the enhancement of Hmga2 expression in hematopoietic stem cells to increase Ly6Chigh monocytes, and the other involves the elevation of HDL-C to decrease peripheral Ly6Chigh monocytes.


Subject(s)
Antigens, Ly/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Monocytes/metabolism , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter 1/metabolism , Animals , Apolipoprotein A-I/genetics , Apolipoprotein A-I/metabolism , Apolipoproteins E/metabolism , Apoptosis , Atherosclerosis/genetics , Atherosclerosis/metabolism , Cholesterol, HDL/blood , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Knockout, ApoE , Monocytes/classification , Monocytes/cytology , Myeloid Progenitor Cells/cytology , Myeloid Progenitor Cells/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Transduction, Genetic
4.
Sci Rep ; 8(1): 16749, 2018 11 13.
Article in English | MEDLINE | ID: mdl-30425314

ABSTRACT

Acute cardiac rupture and adverse left ventricular (LV) remodeling causing heart failure are serious complications of acute myocardial infarction (MI). While cardio-hepatic interactions have been recognized, their role in MI remains unknown. We treated cultured cardiomyocytes with conditioned media from various cell types and analyzed the media by mass spectrometry to identify α1-microglobulin (AM) as an Akt-activating hepatokine. In mouse MI model, AM protein transiently distributed in the infarct and border zones during the acute phase, reflecting infiltration of AM-bound macrophages. AM stimulation activated Akt, NFκB, and ERK signaling and enhanced inflammation as well as macrophage migration and polarization, while inhibited fibrogenesis-related mRNA expression in cultured macrophages and cardiac fibroblasts. Intramyocardial AM administration exacerbated macrophage infiltration, inflammation, and matrix metalloproteinase 9 mRNA expression in the infarct and border zones, whereas disturbed fibrotic repair, then provoked acute cardiac rupture in MI. Shotgun proteomics and lipid pull-down analysis found that AM partly binds to phosphatidic acid (PA) for its signaling and function. Furthermore, systemic delivery of a selective inhibitor of diacylglycerol kinase α-mediated PA synthesis notably reduced macrophage infiltration, inflammation, matrix metalloproteinase activity, and adverse LV remodeling in MI. Therefore, targeting AM signaling could be a novel pharmacological option to mitigate adverse LV remodeling in MI.


Subject(s)
Alpha-Globulins/metabolism , Hormones/metabolism , Myocardial Infarction/pathology , Signal Transduction , Animals , Cell Membrane/metabolism , Cell Movement , Enzyme Activation , Fibrosis , Inflammation/metabolism , Liver/metabolism , Macrophages/cytology , Male , Mice , Mice, Inbred C57BL , Myocardial Infarction/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Phosphatidic Acids/biosynthesis , Proto-Oncogene Proteins c-akt/metabolism , Ventricular Remodeling
SELECTION OF CITATIONS
SEARCH DETAIL