Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Cell ; 175(6): 1651-1664.e14, 2018 11 29.
Article in English | MEDLINE | ID: mdl-30392956

ABSTRACT

The activator and composition of the NLRP6 inflammasome remain poorly understood. We find that lipoteichoic acid (LTA), a molecule produced by Gram-positive bacteria, binds and activates NLRP6. In response to cytosolic LTA or infection with Listeria monocytogenes, NLRP6 recruited caspase-11 and caspase-1 via the adaptor ASC. NLRP6 activation by LTA induced processing of caspase-11, which promoted caspase-1 activation and interleukin-1ß (IL-1ß)/IL-18 maturation in macrophages. Nlrp6-/- and Casp11-/- mice were less susceptible to L. monocytogenes infection, which was associated with reduced pathogen loads and impaired IL-18 production. Administration of IL-18 to Nlrp6-/- or Casp11-/- mice restored the susceptibility of mutant mice to L. monocytogenes infection. These results reveal a previously unrecognized innate immunity pathway triggered by cytosolic LTA that is sensed by NLRP6 and exacerbates systemic Gram-positive pathogen infection via the production of IL-18.


Subject(s)
Immunity, Innate , Inflammasomes/immunology , Lipopolysaccharides/immunology , Listeria monocytogenes/immunology , Listeriosis/immunology , Receptors, Cell Surface/immunology , Teichoic Acids/immunology , Animals , Caspase 1/genetics , Caspase 1/immunology , Caspases/genetics , Caspases/immunology , Caspases, Initiator , Inflammasomes/genetics , Interleukin-18/genetics , Interleukin-18/immunology , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Listeriosis/genetics , Listeriosis/pathology , Mice , Mice, Knockout , Receptors, Cell Surface/genetics
2.
Nat Immunol ; 14(12): 1247-55, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24185614

ABSTRACT

The inflammasome adaptor ASC contributes to innate immunity through the activation of caspase-1. Here we found that signaling pathways dependent on the kinases Syk and Jnk were required for the activation of caspase-1 via the ASC-dependent inflammasomes NLRP3 and AIM2. Inhibition of Syk or Jnk abolished the formation of ASC specks without affecting the interaction of ASC with NLRP3. ASC was phosphorylated during inflammasome activation in a Syk- and Jnk-dependent manner, which suggested that Syk and Jnk are upstream of ASC phosphorylation. Moreover, phosphorylation of Tyr144 in mouse ASC was critical for speck formation and caspase-1 activation. Our results suggest that phosphorylation of ASC controls inflammasome activity through the formation of ASC specks.


Subject(s)
Cytoskeletal Proteins/immunology , Inflammasomes/immunology , Intracellular Signaling Peptides and Proteins/immunology , JNK Mitogen-Activated Protein Kinases/immunology , Protein-Tyrosine Kinases/immunology , Animals , Apoptosis Regulatory Proteins , Bone Marrow Cells/immunology , Bone Marrow Cells/metabolism , CARD Signaling Adaptor Proteins , Carrier Proteins/genetics , Carrier Proteins/immunology , Carrier Proteins/metabolism , Caspase 1/immunology , Caspase 1/metabolism , Cells, Cultured , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , DNA-Binding Proteins , Dendritic Cells/immunology , Dendritic Cells/metabolism , Female , HEK293 Cells , Humans , Immunoblotting , Inflammasomes/genetics , Inflammasomes/metabolism , Interleukin-18/immunology , Interleukin-18/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , JNK Mitogen-Activated Protein Kinases/genetics , JNK Mitogen-Activated Protein Kinases/metabolism , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein , Nigericin/pharmacology , Nuclear Proteins/genetics , Nuclear Proteins/immunology , Nuclear Proteins/metabolism , Phosphorylation/immunology , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , RNA Interference , Syk Kinase , Tyrosine/genetics , Tyrosine/immunology , Tyrosine/metabolism
3.
Biochem Biophys Res Commun ; 695: 149394, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38157629

ABSTRACT

In addition to its role in pyroptosis and inflammatory cytokine maturation, caspase-4 (CASP4) also contributes to the fusion of phagosomes with lysosomes and cell migration. However, its role in cell division remains elusive. In this study, we demonstrate that CASP4 is indispensable for proper cell division in epithelial cells. Knockout of CASP4 (CASP4 KO) in HepG2 cells led to delayed cell proliferation, increased cell size, and increased multinucleation. In mitosis, CASP4 KO cells showed multipolar spindles, asymmetric spindle positioning, and chromosome segregation errors, ultimately increasing DNA content and chromosome number. We also found that phalloidin, a marker of filamentous actin, increased in CASP4 KO cells owing to suppressed actin depolymerization. Moreover, the levels of actin polymerization-related proteins, including Rho-associated protein kinase1 (ROCK1), LIM kinase1 (LIMK1), and phosphorylated cofilin, significantly increased in CASP4 KO cells. These results suggest that CASP4 contributes to proper cell division through actin depolymerization.


Subject(s)
Actin Depolymerizing Factors , Actins , Actins/metabolism , Actin Depolymerizing Factors/metabolism , Cell Movement , Mitosis , Epithelial Cells/metabolism , Lim Kinases/genetics , Phosphorylation
4.
Clin Exp Immunol ; 216(1): 104-111, 2024 03 12.
Article in English | MEDLINE | ID: mdl-37952216

ABSTRACT

The precise pathogenesis of Kawasaki disease remains unknown. In an attempt to elucidate the pathogenesis of KD through the analysis of acquired immunity, we comprehensively examined the immunophenotypic changes in immune cells such as lymphocytes and monocytes along with various cytokines, focusing on differences between pre- and post- treatment samples. We found high levels of CXCL9 and CXCL10 chemokines that decreased with treatment, which coincided with a post-treatment expansion of Th1 cells expressing CXCR3. Our results show that the CXCL10-CXCR3 axis plays an important role in the pathogenesis of KD.


Subject(s)
Mucocutaneous Lymph Node Syndrome , Humans , Chemokine CXCL10 , Chemokine CXCL9 , Cytokines , Th1 Cells , Monocytes , Receptors, CXCR3
5.
Allergol Int ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38600019

ABSTRACT

BACKGROUND: Intestinal bacteria may play a role in the development of food allergies. This study aimed to analyze and compare the gut microbiota of food-allergic children with that of healthy children of the same age. METHODS: Stool samples were collected from one-and-a-half-year-old food-allergic (FA group, n = 29) and healthy controls (HC group, n = 19). A questionnaire was provided to examine the children's birth, dietary, medical, and social histories. The gut microbiota was profiled by 16S rRNA sequencing. Differences in taxonomic composition were assessed using linear discriminant analysis effect size (LEfSe), and microbial functional profiles were predicted with Tax4Fun2. RESULTS: No significant difference in the alpha diversity index between the two groups; however, a negative correlation was observed between the Shannon diversity index and the relative abundance of Bacteroides. A significant difference was observed in beta diversity (permutational multivariate analysis of variance) in the bacterial composition between the FA and HC groups (P < 0.05). The FA group had a higher abundance of Escherichia and Anaeromassilibacillus and a lower abundance of Bacteroides, Oscillibacter, Ruminococcus, Hungateiclostridium and Anaerotaenia than the HC group (LEfSe: linear discriminant analysis score >2). The FA group showed a predicted increase in the expression levels of genes associated with intestinal pathogenicity compared with that in the HC group. CONCLUSIONS: The gut microbiota of food-allergic children has a higher abundance of bacteria involved in intestinal inflammation and a lower abundance of bacteria involved in immune tolerance than that of healthy children. This dysbiosis may also be associated with food allergies.

6.
Microbiol Immunol ; 67(10): 429-437, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37461376

ABSTRACT

The high mortality rate associated with Listeria monocytogenes can be attributed to its ability to invade the body systemically and to activate inflammasomes. Both of these processes are facilitated by expressing a major virulence factor known as listeriolysin O, a 56 kDa pore-forming protein encoded by the hly gene. Listeriolysin O plays a crucial role in the pathogenesis of the bacterium by facilitating the escape of the pathogen from the phagosome into the cytosol. This process is essential for the successful establishment of infection. In addition, listeriolysin O is known as an immunomodulator that activates host signal transduction. In addition to listeriolysin O, Listeria expresses a variety of bacterial ligands, such as lipoteichoic acid, nucleotide, and flagellin, that are recognized by host intracellular pattern-recognition receptors including Nod-like receptors, AIM2-like receptors, and RIG-I-like receptors. This review introduces intracellular recognition of Listeria monocytogenes since recent studies have revealed that the activation of inflammasome exacerbates Gram-positive bacteria infection.


Subject(s)
Listeria monocytogenes , Listeriosis , Humans , Inflammasomes/metabolism , Hemolysin Proteins/genetics , Phagosomes/metabolism , Phagosomes/microbiology , Phagosomes/pathology , Cytosol , Virulence Factors/metabolism
7.
Trends Biochem Sci ; 41(12): 1012-1021, 2016 12.
Article in English | MEDLINE | ID: mdl-27669650

ABSTRACT

Members of the nucleotide-binding domain and leucine-rich repeat (LRR)-containing (NLR) family and the pyrin and HIN domain (PYHIN) family can form multiprotein complexes termed 'inflammasomes'. The biochemical function of inflammasomes is to activate caspase-1, which leads to the maturation of interleukin 1 beta (IL-1ß) and IL-18 and the induction of pyroptosis, a form of cell death. Unlike other inflammasomes, the NLRP3 inflammasome can be activated by diverse stimuli. The importance of the NLRP3 inflammasome in immunity and human diseases has been well documented, but the mechanism and regulation of its activation remain unclear. In this review we summarize current understanding of the mechanism and regulation of NLRP3 inflammasome activation as well as recent advances in the noncanonical and alternative inflammasome pathways.


Subject(s)
Caspase 1/immunology , Inflammasomes/immunology , Macrophages/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Pyroptosis/immunology , Animals , Caspase 1/genetics , Gene Expression Regulation/immunology , Humans , Inflammasomes/agonists , Inflammasomes/genetics , Interleukin-18/genetics , Interleukin-18/immunology , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Ion Transport , Lipopolysaccharides/pharmacology , Macrophages/cytology , Macrophages/drug effects , Mice , Monocytes/cytology , Monocytes/drug effects , Monocytes/immunology , NIMA-Related Kinases/genetics , NIMA-Related Kinases/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/agonists , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Potassium/immunology , Potassium/metabolism , Pyroptosis/genetics , Signal Transduction
8.
Proc Natl Acad Sci U S A ; 114(6): E961-E969, 2017 02 07.
Article in English | MEDLINE | ID: mdl-28096356

ABSTRACT

Necroptosis is a physiological cell suicide mechanism initiated by receptor-interacting protein kinase-3 (RIPK3) phosphorylation of mixed-lineage kinase domain-like protein (MLKL), which results in disruption of the plasma membrane. Necroptotic cell lysis, and resultant release of proinflammatory mediators, is thought to cause inflammation in necroptotic disease models. However, we previously showed that MLKL signaling can also promote inflammation by activating the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome to recruit the adaptor protein apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC) and trigger caspase-1 processing of the proinflammatory cytokine IL-1ß. Here, we provide evidence that MLKL-induced activation of NLRP3 requires (i) the death effector four-helical bundle of MLKL, (ii) oligomerization and association of MLKL with cellular membranes, and (iii) a reduction in intracellular potassium concentration. Although genetic or pharmacological targeting of NLRP3 or caspase-1 prevented MLKL-induced IL-1ß secretion, they did not prevent necroptotic cell death. Gasdermin D (GSDMD), the pore-forming caspase-1 substrate required for efficient NLRP3-triggered pyroptosis and IL-1ß release, was not essential for MLKL-dependent death or IL-1ß secretion. Imaging of MLKL-dependent ASC speck formation demonstrated that necroptotic stimuli activate NLRP3 cell-intrinsically, indicating that MLKL-induced NLRP3 inflammasome formation and IL-1ß cleavage occur before cell lysis. Furthermore, we show that necroptotic activation of NLRP3, but not necroptotic cell death alone, is necessary for the activation of NF-κB in healthy bystander cells. Collectively, these results demonstrate the potential importance of NLRP3 inflammasome activity as a driving force for inflammation in MLKL-dependent diseases.


Subject(s)
Inflammasomes/metabolism , Macrophages/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Protein Kinases/metabolism , Animals , Apoptosis , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Caspase 1/genetics , Caspase 1/metabolism , Cell Line, Tumor , Humans , Interleukin-1beta/metabolism , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Mice , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Necrosis , Protein Kinases/chemistry , Protein Kinases/genetics , Protein Multimerization/drug effects , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
11.
Eur J Immunol ; 44(12): 3696-707, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25251560

ABSTRACT

Listeria monocytogenes induces the formation of inflammasomes and subsequent caspase-1 activation, and the adaptor apoptosis-associated speck-like protein containing a CARD (ASC) is crucial for this response. However, the role of ASC in L. monocytogenes infection in vivo is unclear. In this study, we demonstrate that ASC has a detrimental effect on host defense against L. monocytogenes infection at a lethal dose (10(6) CFU), but not at a sublethal dose (10(3) CFU). During lethal L. monocytogenes infection, serum levels of IL-18 and IL-10 were markedly elevated in WT mice, but not in ASC KO mice. IL-18 KO mice were more resistant to lethal L. monocytogenes infection than WT mice and had lower levels of serum IL-10. Furthermore, blockade of IL-10 receptor resulted in a reduction in bacterial counts, suggesting that ASC and IL-18 might exacerbate L. monocytogenes infection through induction of IL-10. We noticed that maturation of IL-18 during lethal infection was partially independent of caspase-1, but was critically dependent on ASC. ASC was required for the elevation of serum neutrophil serine protease activity, which correlated with caspase-1-independent IL-18 maturation and IL-10 production. Collectively, these results suggest that ASC plays a detrimental role in lethal L. monocytogenes infection through IL-18 production in an inflammasome-dependent and -independent manner.


Subject(s)
Apoptosis Regulatory Proteins/immunology , Inflammasomes/immunology , Interleukin-10/immunology , Interleukin-18/immunology , Listeria monocytogenes/immunology , Listeriosis/immunology , Animals , Apoptosis Regulatory Proteins/genetics , CARD Signaling Adaptor Proteins , Inflammasomes/genetics , Interleukin-10/genetics , Interleukin-18/genetics , Listeriosis/genetics , Listeriosis/pathology , Mice , Mice, Knockout , Neutrophils/immunology , Neutrophils/pathology , Receptors, Interleukin-10/genetics , Receptors, Interleukin-10/immunology , Serine Proteases/genetics , Serine Proteases/immunology
12.
Crit Rev Immunol ; 34(1): 41-80, 2014.
Article in English | MEDLINE | ID: mdl-24579701

ABSTRACT

Inflammasomes, multiprotein platforms of caspase-1 activation, are assembled in response to a number of exogenous and endogenous danger signals, leading to the production of pro-inflammatory cytokines and induction of inflammatory cell death through the activation of caspase-1. Inflammasomes have been implicated in a wide range of physiological and pathological processes, including host defense against microbial pathogens, maintenance of intestinal homeostasis, and even development of inflammatory disorders. Thus, inflammasomes can be both beneficial and detrimental, and understanding the mechanisms involved in inflammasome activation may provide a better approach to prevent the harmful effects of the inflammatory response. Although inflammasome complexes are formed via protein-protein interactions between their components, accumulating evidence suggests that inflammasome activation is positively and negatively regulated by ligand-binding receptors, accessory proteins, other caspases, cytokines, kinases/phosphatases, redox sensors, ion homeostasis, second messengers, organelles, cytoskeleton, and autophagy, among others. Moreover, inflammasome activation can result in the formation of another caspase-1-activating protein complex, the ASC speck/pyroptosome, which is also tightly controlled. In this review, we discuss how the assembly of inflammasomes and ASC speck is regulated by complex mechanisms. Recent findings on effector functions and biological roles of inflammasomes also are summarized.


Subject(s)
Cytoskeletal Proteins/immunology , Inflammasomes/immunology , Animals , Apoptosis , CARD Signaling Adaptor Proteins , Caspase 1/metabolism , Cytokines/metabolism , Homeostasis , Humans , Signal Transduction
13.
Infect Immun ; 82(6): 2310-7, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24643540

ABSTRACT

Streptococcus pneumoniae, a Gram-positive bacterial pathogen, causes pneumonia, meningitis, and septicemia. Innate immune responses are critical for the control and pathology of pneumococcal infections. It has been demonstrated that S. pneumoniae induces the production of type I interferons (IFNs) by host cells and that type I IFNs regulate resistance and chemokine responses to S. pneumoniae infection in an autocrine/paracrine manner. In this study, we examined the effects of type I IFNs on macrophage proinflammatory cytokine production in response to S. pneumoniae. The production of interleukin-18 (IL-18), but not other cytokines tested, was significantly decreased by the absence or blockade of the IFN-α/ß receptor, suggesting that type I IFN signaling is necessary for IL-18 production. Type I IFN signaling was also required for S. pneumoniae-induced activation of caspase-1, a cysteine protease that plays a central role in maturation and secretion of IL-18. Earlier studies proposed that the AIM2 and NLRP3 inflammasomes mediate caspase-1 activation in response to S. pneumoniae. From our results, the AIM2 inflammasome rather than the NLRP3 inflammasome seemed to require type I IFN signaling for its optimal activation. Consistently, AIM2, but not NLRP3, was upregulated in S. pneumoniae-infected macrophages in a manner dependent on the IFN-α/ß receptor. Furthermore, type I IFN signaling was found to contribute to IL-18 production in pneumococcal pneumonia in vivo. Taken together, these results suggest that type I IFNs regulate S. pneumoniae-induced activation of the AIM2 inflammasome by upregulating AIM2 expression. This study revealed a novel role for type I IFNs in innate responses to S. pneumoniae.


Subject(s)
Inflammasomes/physiology , Interferon Type I/physiology , Nuclear Proteins/metabolism , Pneumococcal Infections/metabolism , Animals , Caspase 1/metabolism , Cytokines/metabolism , DNA-Binding Proteins , Disease Models, Animal , Female , Immunity, Innate/physiology , Interleukin-18/metabolism , Macrophages/immunology , Mice , Mice, Inbred C57BL , Pneumococcal Infections/immunology , Signal Transduction/physiology , Streptococcus pneumoniae
14.
Blood ; 119(2): 434-44, 2012 Jan 12.
Article in English | MEDLINE | ID: mdl-22123848

ABSTRACT

Adult T-cell leukemia (ATL) patients and human T-cell leukemia virus-1 (HTLV-1) infected individuals succumb to opportunistic infections. Cell mediated immunity is impaired, yet the mechanism of this impairment has remained elusive. The HTLV-1 basic leucine zipper factor (HBZ) gene is encoded in the minus strand of the viral DNA and is constitutively expressed in infected cells and ATL cells. To test the hypothesis that HBZ contributes to HTLV-1-associated immunodeficiency, we challenged transgenic mice that express the HBZ gene in CD4 T cells (HBZ-Tg mice) with herpes simplex virus type 2 or Listeria monocytogenes, and evaluated cellular immunity to these pathogens. HBZ-Tg mice were more vulnerable to both infections than non-Tg mice. The acquired immune response phase was specifically suppressed, indicating that cellular immunity was impaired in HBZ-Tg mice. In particular, production of IFN-γ by CD4 T cells was suppressed in HBZ-Tg mice. HBZ suppressed transcription from the IFN-γ gene promoter in a CD4 T cell-intrinsic manner by inhibiting nuclear factor of activated T cells and the activator protein 1 signaling pathway. This study shows that HBZ inhibits CD4 T-cell responses by directly interfering with the host cell-signaling pathway, resulting in impaired cell-mediated immunity in vivo.


Subject(s)
Basic-Leucine Zipper Transcription Factors/physiology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , Cytokines/metabolism , Immunity, Cellular/immunology , Interferon-gamma/genetics , Th1 Cells/immunology , Viral Proteins/physiology , Animals , CD4-Positive T-Lymphocytes/metabolism , Cells, Cultured , Chromatin Immunoprecipitation , Female , Flow Cytometry , Gene Expression Regulation , Herpes Simplex/immunology , Herpes Simplex/metabolism , Herpes Simplex/virology , Herpesvirus 2, Human/pathogenicity , Humans , Interferon-gamma/metabolism , Listeria monocytogenes/pathogenicity , Listeriosis/immunology , Listeriosis/metabolism , Listeriosis/virology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Promoter Regions, Genetic , Retroviridae Proteins , Th1 Cells/metabolism , Transcription Factor AP-1/metabolism
15.
Blood ; 120(6): 1299-308, 2012 Aug 09.
Article in English | MEDLINE | ID: mdl-22723549

ABSTRACT

Chronic infantile neurologic cutaneous and articular (CINCA) syndrome is an IL-1-driven autoinflammatory disorder caused mainly by NLRP3 mutations. The pathogenesis of CINCA syndrome patients who carry NLRP3 mutations as somatic mosaicism has not been precisely described because of the difficulty in separating individual cells based on the presence or absence of the mutation. Here we report the generation of NLRP3-mutant and nonmutant-induced pluripotent stem cell (iPSC) lines from 2 CINCA syndrome patients with somatic mosaicism, and describe their differentiation into macrophages (iPS-MPs). We found that mutant cells are predominantly responsible for the pathogenesis in these mosaic patients because only mutant iPS-MPs showed the disease relevant phenotype of abnormal IL-1ß secretion. We also confirmed that the existing anti-inflammatory compounds inhibited the abnormal IL-1ß secretion, indicating that mutant iPS-MPs are applicable for drug screening for CINCA syndrome and other NLRP3-related inflammatory conditions. Our results illustrate that patient-derived iPSCs are useful for dissecting somatic mosaicism and that NLRP3-mutant iPSCs can provide a valuable platform for drug discovery for multiple NLRP3-related disorders.


Subject(s)
Cryopyrin-Associated Periodic Syndromes/pathology , Drug Discovery/methods , Induced Pluripotent Stem Cells/pathology , Models, Theoretical , Mosaicism , Animals , Carrier Proteins/genetics , Carrier Proteins/physiology , Cells, Cultured , Cryopyrin-Associated Periodic Syndromes/drug therapy , Cryopyrin-Associated Periodic Syndromes/genetics , Humans , Induced Pluripotent Stem Cells/physiology , Infant , Mice , Mice, Inbred NOD , Mice, SCID , Mice, Transgenic , Mutant Proteins/genetics , Mutant Proteins/physiology , NLR Family, Pyrin Domain-Containing 3 Protein
16.
J Immunol ; 189(11): 5113-7, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-23100513

ABSTRACT

Although the NLRP3 inflammasome plays a pivotal role in host defense, its uncontrolled activation is associated with inflammatory disorders, suggesting that regulation of the inflammasome is important to prevent detrimental effects. Type I IFNs and long-term LPS stimulation were shown to negatively regulate NLRP3 activation. In this study, we found that endogenous NO is involved in the regulation of NLRP3 inflammasome activation by either IFN-ß pretreatment or long-term LPS stimulation. Furthermore, S-nitroso-N-acetylpenicillamine (SNAP), an NO donor, markedly inhibited NLRP3 inflammasome activation, whereas the AIM2 and NLRC4 inflammasomes were only partially inhibited by SNAP. An increase in mitochondrial reactive oxygen species induced by ATP was only modestly affected by SNAP treatment. Interestingly, S-nitrosylation of NLRP3 was detected in macrophages treated with SNAP, and this modification may account for the NO-mediated mechanism controlling inflammasome activation. Taken together, these results revealed a novel role for NO in regulating the NLRP3 inflammasome.


Subject(s)
Carrier Proteins/antagonists & inhibitors , Inflammasomes/drug effects , Macrophages, Peritoneal/drug effects , Nitric Oxide/metabolism , S-Nitroso-N-Acetylpenicillamine/pharmacology , Adenosine Triphosphate/pharmacology , Animals , Apoptosis Regulatory Proteins/antagonists & inhibitors , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/immunology , Calcium-Binding Proteins/antagonists & inhibitors , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/immunology , Carrier Proteins/genetics , Carrier Proteins/immunology , Cells, Cultured , DNA-Binding Proteins , Female , Gene Expression Regulation/drug effects , Inflammasomes/immunology , Interferon-beta/immunology , Interferon-beta/pharmacology , Lipopolysaccharides/pharmacology , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/metabolism , Mice , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/immunology , Mitochondria/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/genetics , Nuclear Proteins/immunology , Reactive Oxygen Species/metabolism , S-Nitroso-N-Acetylpenicillamine/metabolism , Signal Transduction/drug effects , Signal Transduction/immunology
17.
J Immunol ; 187(9): 4890-9, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-21957143

ABSTRACT

Streptococcus pneumoniae is a Gram-positive, extracellular bacterium that is responsible for significant mortality and morbidity worldwide. Pneumolysin (PLY), a cytolysin produced by all clinical isolates of the pneumococcus, is one of the most important virulence factors of this pathogen. We have previously reported that PLY is an essential factor for activation of caspase-1 and consequent secretion of IL-1ß and IL-18 in macrophages infected with S. pneumoniae. However, the host molecular factors involved in caspase-1 activation are still unclear. To further elucidate the mechanism of caspase-1 activation in macrophages infected with S. pneumoniae, we examined the involvement of inflammasomes in inducing this cellular response. Our study revealed that apoptosis-associated specklike protein containing a caspase recruitment domain (ASC), an adaptor protein for inflammasome receptors such as nucleotide-binding oligomerization domain-like receptor family, pyrin domain containing 3 (NLRP3) and absent in melanoma 2 (AIM2), is essentially required for the induction of caspase-1 activation by S. pneumoniae. Caspase-1 activation was partially impaired in NLRP3(-/-) macrophages, whereas knockdown and knockout of AIM2 resulted in a clear decrease in caspase-1 activation in response to S. pneumoniae. These results suggest that ASC inflammasomes, including AIM2 and NLRP3, are critical for caspase-1 activation induced by S. pneumoniae. Furthermore, ASC(-/-) mice were more susceptible than wild-type mice to S. pneumoniae, with impaired secretion of IL-1ß and IL-18 into the bronchoalveolar lavage after intranasal infection, suggesting that ASC inflammasomes contribute to the protection of host from infection with PLY-producing S. pneumoniae.


Subject(s)
Caspase 1/metabolism , Cytoskeletal Proteins/physiology , Immunity, Innate , Inflammasomes/physiology , Pneumococcal Infections/immunology , Pneumococcal Infections/metabolism , Animals , Apoptosis Regulatory Proteins , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/biosynthesis , CARD Signaling Adaptor Proteins , Carrier Proteins/physiology , Caspase 1/deficiency , Caspase 1/genetics , Cell Line , Cell Line, Transformed , Cells, Cultured , Cytoskeletal Proteins/deficiency , Cytoskeletal Proteins/genetics , DNA-Binding Proteins , Disease Resistance/immunology , Enzyme Activation/immunology , Female , Interleukin-18/metabolism , Interleukin-1beta/metabolism , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein , Nuclear Proteins/physiology , Pneumococcal Infections/enzymology , Streptolysins/antagonists & inhibitors , Streptolysins/biosynthesis
18.
Infect Immun ; 80(7): 2323-32, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22508860

ABSTRACT

Among a number of laboratory strains of Listeria monocytogenes used in experimental infection, strain LO28 is highly capable of inducing robust beta interferon (IFN-ß) production in infected macrophages. In this study, we investigated the molecular mechanism of the IFN-ß-inducing ability of LO28 by comparing it with that of strain EGD, a low-IFN-ß-inducing strain. It was found that LO28 secretes a large amount of IFN-ß-inducing factor, which turned out to be cyclic di-AMP. The secretion of cyclic di-AMP was dependent on MdrT, a multidrug resistance transporter, and LO28 exhibited a very high level of mdrT expression. The introduction of a null mutation into mdrT abolished the ability of LO28 to induce IFN-ß production. Examination of genes responsible for the regulation of mdrT expression revealed a spontaneous 188-bp deletion in tetR of LO28. By constructing recombinant strains of LO28 and EGD in which tetR from each strain was replaced, it was confirmed that the distinct ability of LO28 is attributable mostly to tetR mutation. We concluded that the strong IFN-ß-inducing ability of LO28 is due to a genetic defect in tetR resulting in the overexpression of mdrT and a concomitant increase in the secretion of cyclic di-AMP through MdrT.


Subject(s)
Dinucleoside Phosphates/metabolism , Host-Pathogen Interactions , Interferon-beta/metabolism , Listeria monocytogenes/pathogenicity , Macrophages/immunology , Macrophages/microbiology , Repressor Proteins/deficiency , Animals , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Female , Gene Expression Regulation, Bacterial , Listeria monocytogenes/genetics , Membrane Transport Proteins/biosynthesis , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Repressor Proteins/genetics , Sequence Analysis, DNA , Sequence Deletion
19.
J Immunol ; 185(2): 1186-95, 2010 Jul 15.
Article in English | MEDLINE | ID: mdl-20566831

ABSTRACT

Listeria monocytogenes invades the cytoplasm of macrophages and induces the activation of caspase-1 and the subsequent maturation of IL-1beta and IL-18. Although apoptosis-associated speck-like protein containing a caspase-activating and recruitment domain (ASC), an adaptor protein of nucleotide-binding oligomerization domain (Nod)-like receptors, has been shown to play an essential role in inducing this cellular response to L. monocytogenes, the mechanism has not been fully elucidated. In this study, we demonstrate the role of absent in melanoma 2 (AIM2), a recently described receptor of cytosolic DNA, in the activation of caspase-1 upon infection with L. monocytogenes. Secretion of IL-1beta and IL-18 from Nod-like receptor family, pyrin domain containing 3 (NLRP3) and Nod-like receptor family, caspase-activating and recruitment domain containing 4 (NLRC4) knockout macrophages in response to L. monocytogenes was only slightly decreased compared with the levels secreted from wild-type macrophages, whereas secretion from ASC knockout macrophages was completely impaired, suggesting that receptors other than NLRP3 and NLRC4 also take part in inflammasome activation in an ASC-dependent manner. To identify such receptors, the abilities of several receptor candidates (NLRP2, NLRP6, NLRP12, and AIM2) to induce the secretion of IL-1beta in response to L. monocytogenes were compared using the inflammasome system reconstructed in HEK293 cells. Among these receptor candidates, AIM2 conferred the highest responsiveness to the bacterium on HEK293 cells. Knockdown of AIM2 significantly decreased the secretion of IL-1beta and IL-18 from L. monocytogenes-infected macrophages. These results suggest that AIM2, in cooperation with NLRP3 and NLRC4, plays an important role in the activation of caspase-1 during L. monocytogenes infection.


Subject(s)
Listeria monocytogenes/physiology , Macrophages/microbiology , Nuclear Proteins/metabolism , Animals , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Blotting, Western , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Caspase 1/genetics , Caspase 1/metabolism , Cell Line , Cells, Cultured , DNA, Bacterial/genetics , DNA, Bacterial/immunology , DNA, Bacterial/pharmacology , DNA-Binding Proteins , Female , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/immunology , Humans , Interleukin-18/genetics , Interleukin-18/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Listeria monocytogenes/genetics , Listeria monocytogenes/immunology , Macrophages/cytology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein , Nuclear Proteins/genetics , Phagosomes/immunology , Phagosomes/metabolism , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction
20.
Cell Rep ; 38(8): 110414, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35196496

ABSTRACT

Inflammasome activation exacerbates infectious disease caused by pathogens such as Listeria monocytogenes, Staphylococcus aureus, and severe acute respiratory syndrome coronavirus 2. Although these pathogens activate host inflammasomes to regulate pathogen expansion, the mechanisms by which pathogen toxins contribute to inflammasome activation remain poorly understood. Here we show that activation of inflammasomes by Listeria infection is promoted by amino acid residue T223 of listeriolysin O (LLO) independently of its pore-forming activity. LLO T223 is critical for phosphorylation of the inflammasome adaptor ASC at amino acid residue Y144 through Lyn-Syk signaling, which is essential for ASC oligomerization. Notably, a Listeria mutant expressing LLO T223A is impaired in inducing ASC phosphorylation and inflammasome activation. Furthermore, the virulence of LLO T223A mutant is markedly attenuated in vivo due to impaired ability to activate the inflammasome. Our results reveal a function of a pathogen toxin that exacerbates infection by promoting phosphorylation of ASC.


Subject(s)
Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , CARD Signaling Adaptor Proteins/metabolism , Heat-Shock Proteins/metabolism , Hemolysin Proteins/metabolism , Inflammasomes/metabolism , Listeria monocytogenes/pathogenicity , Signal Transduction , Amino Acid Sequence , Animals , Bacterial Proteins/genetics , Bacterial Toxins/chemistry , Bacterial Toxins/genetics , CARD Signaling Adaptor Proteins/chemistry , CARD Signaling Adaptor Proteins/deficiency , CARD Signaling Adaptor Proteins/genetics , Gene Editing , Heat-Shock Proteins/chemistry , Heat-Shock Proteins/genetics , Hemolysin Proteins/chemistry , Hemolysin Proteins/genetics , Interleukin-18/metabolism , Listeria monocytogenes/metabolism , Macrophages, Peritoneal/cytology , Macrophages, Peritoneal/metabolism , Macrophages, Peritoneal/microbiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutagenesis, Site-Directed , Phosphorylation , Syk Kinase/genetics , Syk Kinase/metabolism , Virulence , src-Family Kinases/genetics , src-Family Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL