Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Cell ; 79(5): 846-856.e8, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32755594

ABSTRACT

Resveratrol is a natural product associated with wide-ranging effects in animal and cellular models, including lifespan extension. To identify the genetic target of resveratrol in human cells, we conducted genome-wide CRISPR-Cas9 screens to pinpoint genes that confer sensitivity or resistance to resveratrol. An extensive network of DNA damage response and replicative stress genes exhibited genetic interactions with resveratrol and its analog pterostilbene. These genetic profiles showed similarity to the response to hydroxyurea, an inhibitor of ribonucleotide reductase that causes replicative stress. Resveratrol, pterostilbene, and hydroxyurea caused similar depletion of nucleotide pools, inhibition of replication fork progression, and induction of replicative stress. The ability of resveratrol to inhibit cell proliferation and S phase transit was independent of the histone deacetylase sirtuin 1, which has been implicated in lifespan extension by resveratrol. These results establish that a primary impact of resveratrol on human cell proliferation is the induction of low-level replicative stress.


Subject(s)
Cell Proliferation/drug effects , DNA Replication/drug effects , Resveratrol/pharmacology , CRISPR-Cas Systems , Cell Line , Drug Resistance/genetics , Humans , Hydroxyurea/pharmacology , Jurkat Cells , Nucleotides/metabolism , S Phase Cell Cycle Checkpoints/drug effects , Sirtuin 1/metabolism , Stilbenes/pharmacology
2.
EMBO J ; 41(4): e106825, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35023164

ABSTRACT

Despite extensive analysis of pRB phosphorylation in vitro, how this modification influences development and homeostasis in vivo is unclear. Here, we show that homozygous Rb∆K4 and Rb∆K7 knock-in mice, in which either four or all seven phosphorylation sites in the C-terminal region of pRb, respectively, have been abolished by Ser/Thr-to-Ala substitutions, undergo normal embryogenesis and early development, notwithstanding suppressed phosphorylation of additional upstream sites. Whereas Rb∆K4 mice exhibit telomere attrition but no other abnormalities, Rb∆K7 mice are smaller and display additional hallmarks of premature aging including infertility, kyphosis, and diabetes, indicating an accumulative effect of blocking pRb phosphorylation. Diabetes in Rb∆K7 mice is insulin-sensitive and associated with failure of quiescent pancreatic ß-cells to re-enter the cell cycle in response to mitogens, resulting in induction of DNA damage response (DDR), senescence-associated secretory phenotype (SASP), and reduced pancreatic islet mass and circulating insulin level. Pre-treatment with the epigenetic regulator vitamin C reduces DDR, increases cell cycle re-entry, improves islet morphology, and attenuates diabetes. These results have direct implications for cell cycle regulation, CDK-inhibitor therapeutics, diabetes, and longevity.


Subject(s)
Aging/physiology , Ascorbic Acid/pharmacology , Diabetes Mellitus, Experimental/prevention & control , Retinoblastoma Protein/metabolism , Animals , Cellular Senescence/drug effects , Cyclin-Dependent Kinase 2/antagonists & inhibitors , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/pathology , E2F1 Transcription Factor/metabolism , Embryonic Development/genetics , Female , Fibroblasts/drug effects , Gene Knock-In Techniques , Insulin-Secreting Cells/pathology , Mice , Phosphorylation , Pregnancy , Retinoblastoma Protein/genetics , Telomere/genetics
3.
PLoS Genet ; 18(11): e1010506, 2022 11.
Article in English | MEDLINE | ID: mdl-36441670

ABSTRACT

Short telomeres induce a DNA damage response (DDR) that evokes apoptosis and senescence in human cells. An extant question is the contribution of telomere dysfunction-induced DDR to the phenotypes observed in aging and telomere biology disorders. One candidate is RAP1, a telomere-associated protein that also controls transcription at extratelomeric regions. To distinguish these roles, we generated a knockin mouse carrying a mutated Rap1, which was incapable of binding telomeres and did not result in eroded telomeres or a DDR. Primary Rap1 knockin embryonic fibroblasts showed decreased RAP1 expression and re-localization away from telomeres, with an increased cytosolic distribution akin to that observed in human fibroblasts undergoing telomere erosion. Rap1 knockin mice were viable, but exhibited transcriptomic alterations, proinflammatory cytokine/chemokine signaling, reduced lifespan, and decreased healthspan with increased body weight/fasting blood glucose levels, spontaneous tumor incidence, and behavioral deficits. Taken together, our data present mechanisms distinct from telomere-induced DDR that underlie age-related phenotypes.


Subject(s)
Shelterin Complex , Telomere , Animals , Humans , Mice , Longevity , Phenotype , Telomere/genetics , Telomere Shortening
4.
EMBO J ; 39(21): e103420, 2020 11 02.
Article in English | MEDLINE | ID: mdl-32935380

ABSTRACT

Short telomeres are a principal defining feature of telomere biology disorders, such as dyskeratosis congenita (DC), for which there are no effective treatments. Here, we report that primary fibroblasts from DC patients and late generation telomerase knockout mice display lower nicotinamide adenine dinucleotide (NAD) levels, and an imbalance in the NAD metabolome that includes elevated CD38 NADase and reduced poly(ADP-ribose) polymerase and SIRT1 activities, respectively, affecting many associated biological pathways. Supplementation with the NAD precursor, nicotinamide riboside, and CD38 inhibition improved NAD homeostasis, thereby alleviating telomere damage, defective mitochondrial biosynthesis and clearance, cell growth retardation, and cellular senescence of DC fibroblasts. These findings reveal a direct, underlying role of NAD dysregulation when telomeres are short and underscore its relevance to the pathophysiology and interventions of human telomere-driven diseases.


Subject(s)
Dyskeratosis Congenita/genetics , Dyskeratosis Congenita/metabolism , Fibroblasts/metabolism , NAD/metabolism , Telomerase/genetics , Telomere/metabolism , ADP-ribosyl Cyclase 1/genetics , Animals , Brain/pathology , Cell Line , Cellular Senescence , Dyskeratosis Congenita/pathology , Female , Homeostasis , Humans , Membrane Glycoproteins/genetics , Mice , Mice, Knockout , Mitochondria/metabolism , Niacinamide/analogs & derivatives , Niacinamide/metabolism , Phenotype , Poly (ADP-Ribose) Polymerase-1/metabolism , Pyridinium Compounds/metabolism , Telomerase/metabolism
5.
Proc Biol Sci ; 291(2020): 20232946, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38565156

ABSTRACT

Telomere length (TL) is a biomarker hypothesized to capture evolutionarily and ecologically important physiological costs of reproduction, infection and immunity. Few studies have estimated the relationships among infection status, immunity, TL and fitness in natural systems. The hypothesis that short telomeres predict reduced survival because they reflect costly consequences of infection and immune investment remains largely untested. Using longitudinal data from a free-living Soay sheep population, we tested whether leucocyte TL was predicted by infection with nematode parasites and antibody levels against those parasites. Helminth parasite burdens were positively associated with leucocyte TL in both lambs and adults, which is not consistent with TL reflecting infection costs. We found no association between TL and helminth-specific IgG levels in either young or old individuals which suggests TL does not reflect costs of an activated immune response or immunosenescence. Furthermore, we found no support for TL acting as a mediator of trade-offs between infection, immunity and subsequent survival in the wild. Our results suggest that while variation in TL could reflect short-term variation in resource investment or environmental conditions, it does not capture costs of infection and immunity, nor does it behave like a marker of an individual's helminth-specific antibody immune response.


Subject(s)
Helminths , Sheep, Domestic , Animals , Sheep , Telomere Shortening , Reproduction , Telomere
6.
Biogerontology ; 25(2): 361-378, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38310618

ABSTRACT

Telomere Biology Disorders (TBDs) are a group of rare diseases characterized by the presence of short and/or dysfunctional telomeres. They comprise a group of bone marrow failure syndromes, idiopathic pulmonary fibrosis, and liver disease, among other diseases. Genetic alterations (variants) in the genes responsible for telomere homeostasis have been linked to TBDs. Despite the number of variants already identified as pathogenic, an even more significant number must be better understood. The study of TBDs is challenging since identifying these variants is difficult due to their rareness, it is hard to predict their impact on the disease onset, and there are not enough samples to study. Most of our knowledge about pathogenic variants comes from assessing telomerase activity from patients and their relatives affected by a TBD. However, we still lack a cell-based model to identify new variants and to study the long-term impact of such variants on the genes involved in TBDs. Herein, we present a cell-based model using CRISPR base editing to mutagenize the endogenous alleles of 21 genes involved in telomere biology. We identified key residues in the genes encoding 17 different proteins impacting cell growth. We provide functional evidence for variants of uncertain significance in patients with TBDs. We also identified variants resistant to telomerase inhibition that, similar to cells expressing wild-type telomerase, exhibited increased tumorigenic potential using an in vitro tumour growth assay. We believe that such cell-based approaches will significantly advance our understanding of the biology of TBDs and may contribute to the development of new therapies for this group of diseases.


Subject(s)
Telomerase , Humans , Telomerase/genetics , Telomerase/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats , Gene Editing , Aging/genetics , Telomere/genetics , Biology
7.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Article in English | MEDLINE | ID: mdl-33876756

ABSTRACT

Telomere length (TL) is considered an important biomarker of whole-organism health and aging. Across humans and other vertebrates, short telomeres are associated with increased subsequent mortality risk, but the processes responsible for this correlation remain uncertain. A key unanswered question is whether TL-mortality associations arise due to positive effects of genes or early-life environment on both an individual's average lifetime TL and their longevity, or due to more immediate effects of environmental stressors on within-individual TL loss and increased mortality risk. Addressing this question requires longitudinal TL and life history data across the entire lifetimes of many individuals, which are difficult to obtain for long-lived species like humans. Using longitudinal data and samples collected over nearly two decades, as part of a long-term study of wild Soay sheep, we dissected an observed positive association between TL and subsequent survival using multivariate quantitative genetic models. We found no evidence that telomere attrition was associated with increased mortality risk, suggesting that TL is not an important marker of biological aging or exposure to environmental stress in our study system. Instead, we find that among-individual differences in average TL are associated with increased lifespan. Our analyses suggest that this correlation between an individual's average TL and lifespan has a genetic basis. This demonstrates that TL has the potential to evolve under natural conditions, and suggests an important role of genetics underlying the widespread observation that short telomeres predict mortality.


Subject(s)
Genetic Variation , Longevity , Sheep/genetics , Telomere Homeostasis , Animals , Sheep/growth & development , Sheep/physiology
8.
Mol Ecol ; 31(23): 6184-6196, 2022 12.
Article in English | MEDLINE | ID: mdl-34514660

ABSTRACT

Telomere length (TL), typically measured across a sample of blood cells, has emerged as an exciting potential marker of physiological state and of the costs of investment in growth and reproduction within evolutionary ecology. While there is mounting evidence from studies of wild vertebrates that short TL predicts raised subsequent mortality risk, the relationship between reproductive investment and TL is less clear cut, and previous studies report both negative and positive associations. In this study, we examined the relationship between TL and different aspects of maternal reproductive performance in a free-living population of Soay sheep. We find evidence for shorter TL in females that bred, and thus paid any costs of gestation, compared to females that did not breed. However, we found no evidence for any association between TL and litter size. Furthermore, females that invested in gestation and lactation actually had longer TL than females who only invested in gestation because their offspring died shortly after birth. We used multivariate models to decompose these associations into among- and within-individual effects, and discovered that within-individual effects were driving both the negative association between TL and gestation, and the positive association between TL and lactation. This suggests that telomere dynamics may reflect recent physiologically costly investment or variation in physiological condition, depending on the aspect of reproduction being investigated. Our results highlight the physiological complexity of vertebrate reproduction, and the need to better understand how and why different aspects of physiological variation underpinning life histories impact blood cell TL.


Subject(s)
Longevity , Reproduction , Animals , Sheep/genetics , Female , Reproduction/genetics , Telomere Shortening , Leukocytes , Telomere/genetics
9.
PLoS Comput Biol ; 17(10): e1009482, 2021 10.
Article in English | MEDLINE | ID: mdl-34679099

ABSTRACT

MHC-I associated peptides (MAPs) play a central role in the elimination of virus-infected and neoplastic cells by CD8 T cells. However, accurately predicting the MAP repertoire remains difficult, because only a fraction of the transcriptome generates MAPs. In this study, we investigated whether codon arrangement (usage and placement) regulates MAP biogenesis. We developed an artificial neural network called Codon Arrangement MAP Predictor (CAMAP), predicting MAP presentation solely from mRNA sequences flanking the MAP-coding codons (MCCs), while excluding the MCC per se. CAMAP predictions were significantly more accurate when using original codon sequences than shuffled codon sequences which reflect amino acid usage. Furthermore, predictions were independent of mRNA expression and MAP binding affinity to MHC-I molecules and applied to several cell types and species. Combining MAP ligand scores, transcript expression level and CAMAP scores was particularly useful to increase MAP prediction accuracy. Using an in vitro assay, we showed that varying the synonymous codons in the regions flanking the MCCs (without changing the amino acid sequence) resulted in significant modulation of MAP presentation at the cell surface. Taken together, our results demonstrate the role of codon arrangement in the regulation of MAP presentation and support integration of both translational and post-translational events in predictive algorithms to ameliorate modeling of the immunopeptidome.


Subject(s)
Codon , Computational Biology/methods , Histocompatibility Antigens Class I , Neural Networks, Computer , Algorithms , Amino Acid Sequence , Codon/chemistry , Codon/genetics , Codon/metabolism , Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Humans
10.
PLoS Genet ; 10(10): e1004679, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25329304

ABSTRACT

Broken replication forks result in DNA breaks that are normally repaired via homologous recombination or break induced replication (BIR). Mild insufficiency in the replicative ligase Cdc9 in budding yeast Saccharomyces cerevisiae resulted in a population of cells with persistent DNA damage, most likely due to broken replication forks, constitutive activation of the DNA damage checkpoint and longer telomeres. This telomere lengthening required functional telomerase, the core DNA damage signaling cascade Mec1-Rad9-Rad53, and the components of the BIR repair pathway - Rad51, Rad52, Pol32, and Pif1. The Mec1-Rad53 induced phosphorylation of Pif1, previously found necessary for inhibition of telomerase at double strand breaks, was also important for the role of Pif1 in BIR and telomere elongation in cdc9-1 cells. Two other mutants with impaired DNA replication, cdc44-5 and rrm3Δ, were similar to cdc9-1: their long telomere phenotype was dependent on the Pif1 phosphorylation locus. We propose a model whereby the passage of BIR forks through telomeres promotes telomerase activity and leads to telomere lengthening.


Subject(s)
DNA Damage , DNA Helicases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Telomere Homeostasis , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Checkpoint Kinase 2/genetics , Checkpoint Kinase 2/metabolism , DNA Breaks, Single-Stranded , DNA Helicases/genetics , DNA Ligase ATP , DNA Ligases/genetics , DNA Ligases/metabolism , DNA Replication , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mutation , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Replication Protein C/genetics , Replication Protein C/metabolism , Saccharomyces cerevisiae Proteins/genetics , Signal Transduction , Telomerase/genetics , Telomerase/metabolism
11.
J Biol Chem ; 290(9): 5502-11, 2015 Feb 27.
Article in English | MEDLINE | ID: mdl-25572391

ABSTRACT

Uracil in the genome can result from misincorporation of dUTP instead of dTTP during DNA synthesis, and is primarily removed by uracil DNA glycosylase (UNG) during base excision repair. Telomeres contain long arrays of TTAGGG repeats and may be susceptible to uracil misincorporation. Using model telomeric DNA substrates, we showed that the position and number of uracil substitutions of thymine in telomeric DNA decreased recognition by the telomere single-strand binding protein, POT1. In primary mouse hematopoietic cells, uracil was detectable at telomeres, and UNG deficiency further increased uracil loads and led to abnormal telomere lengthening. In UNG-deficient cells, the frequencies of sister chromatid exchange and fragility in telomeres also significantly increased in the absence of telomerase. Thus, accumulation of uracil and/or UNG deficiency interferes with telomere maintenance, thereby underscoring the necessity of UNG-initiated base excision repair for the preservation of telomere integrity.


Subject(s)
Bone Marrow Cells/metabolism , DNA Repair , Telomere/metabolism , Uracil/metabolism , Animals , Base Sequence , Cells, Cultured , DNA Damage , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , In Situ Hybridization, Fluorescence , Mice, Knockout , Protein Binding , Shelterin Complex , Telomere/genetics , Telomere Homeostasis/genetics , Telomere-Binding Proteins , Telomeric Repeat Binding Protein 1/genetics , Telomeric Repeat Binding Protein 1/metabolism , Telomeric Repeat Binding Protein 2/genetics , Telomeric Repeat Binding Protein 2/metabolism , Thymine/metabolism , Uracil-DNA Glycosidase/deficiency , Uracil-DNA Glycosidase/genetics
13.
Nucleic Acids Res ; 40(5): e36, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22187156

ABSTRACT

Telomeres, the ends of linear chromosomes, safeguard against genome instability. The enzyme responsible for extension of the telomere 3' terminus is the ribonucleoprotein telomerase. Whereas telomerase activity can be reconstituted in vitro with only the telomerase RNA (hTR) and telomerase reverse transcriptase (TERT), additional components are required in vivo for enzyme assembly, stability and telomere extension activity. One such associated protein, dyskerin, promotes hTR stability in vivo and is the only component to co-purify with active, endogenous human telomerase. We used oligonucleotide-based affinity purification of hTR followed by native gel electrophoresis and in-gel telomerase activity detection to query the composition of telomerase at different purification stringencies. At low salt concentrations (0.1 M NaCl), affinity-purified telomerase was 'supershifted' with an anti-dyskerin antibody, however the association with dyskerin was lost after purification at 0.6 M NaCl, despite the retention of telomerase activity and a comparable yield of hTR. The interaction of purified hTR and dyskerin in vitro displayed a similar salt-sensitive interaction. These results demonstrate that endogenous human telomerase, once assembled and active, does not require dyskerin for catalytic activity. Native gel electrophoresis may prove useful in the characterization of telomerase complexes under various physiological conditions.


Subject(s)
Cell Cycle Proteins/metabolism , Electrophoresis , Nuclear Proteins/metabolism , Telomerase/isolation & purification , Telomerase/metabolism , Antibodies , Cell Cycle Proteins/immunology , Cell Line, Tumor , Humans , Nuclear Proteins/immunology , Oligonucleotides , Sodium Chloride/chemistry , Telomerase/analysis
14.
Article in English | MEDLINE | ID: mdl-38486371

ABSTRACT

The inaugural Canadian Conferences on Translational Geroscience were held as 2 complementary sessions in October and November 2023. The conferences explored the profound interplay between the biology of aging, social determinants of health, the potential societal impact of geroscience, and the maintenance of health in aging individuals. Although topics such as cellular senescence, molecular and genetic determinants of aging, and prevention of chronic disease were addressed, the conferences went on to emphasize practical applications for enhancing older people's quality of life. This article summarizes the proceeding and underscores the synergy between clinical and fundamental studies. Future directions highlight national and global collaborations and the crucial integration of early-career investigators. This work charts a course for a national framework for continued innovation and advancement in translational geroscience in Canada.


Subject(s)
Geriatrics , Translational Research, Biomedical , Humans , Canada , Geriatrics/trends , Aging/genetics , Aging/physiology , Quality of Life , Aged , Forecasting
15.
Mutat Res ; 730(1-2): 37-42, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22100521

ABSTRACT

In humans, autosomal dominant or X-linked disease can arise through a phenomenon termed haploinsufficiency, where one remaining wild-type allele is insufficient for function. In model organisms, the impact of heterozygosity can be tested directly with engineered mutant alleles or in a hemizygous state where the expression of one allele is abrogated completely. This review will focus on haploinsufficiency as it relates to telomerase and telomere length maintenance and, citing selected examples in various model organisms, it will discuss how the problem of gene dosage relates to telomere function in normal and diseased states.


Subject(s)
Haploinsufficiency , Telomere Homeostasis , Telomere/genetics , Animals , Gene Dosage , Humans , Mice , Models, Animal , Mutation , Telomerase/metabolism
16.
Nucleic Acids Res ; 38(6): 2019-35, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20034955

ABSTRACT

Telomerase defers the onset of telomere damage-induced signaling and cellular senescence by adding DNA onto chromosome ends. The ability of telomerase to elongate single-stranded telomeric DNA depends on the reverse transcriptase domain of TERT, and also relies on protein:DNA contacts outside the active site. We purified the N-terminus of human TERT (hTEN) from Escherichia coli, and found that it binds DNA with a preference for telomeric sequence of a certain length and register. hTEN interacted with the C-terminus of hTERT in trans to reconstitute enzymatic activity in vitro. Mutational analysis of hTEN revealed that amino acids Y18 and Q169 were required for telomerase activity in vitro, but not for the interaction with telomere DNA or the C-terminus. These mutants did not reconstitute telomerase activity in cells, maintain telomere length, or extend cellular lifespan. In addition, we found that T116/T117/S118, while dispensable in vitro, were required for cellular immortalization. Thus, the interactions of hTEN with telomere DNA and the C-terminus of hTERT are functionally separable from the role of hTEN in telomere elongation activity in vitro and in vivo, suggesting other roles for the protein and nucleic acid interactions of hTEN within, and possibly outside, the telomerase catalytic core.


Subject(s)
DNA-Binding Proteins/chemistry , Telomerase/chemistry , Cell Line , Cell Line, Transformed , Cell Proliferation , DNA/chemistry , DNA/metabolism , DNA-Binding Proteins/metabolism , Escherichia coli/genetics , Humans , Mutation , Recombinant Fusion Proteins/biosynthesis , Telomerase/genetics , Telomerase/metabolism , Telomere/metabolism
17.
Mol Oncol ; 16(18): 3380-3396, 2022 09.
Article in English | MEDLINE | ID: mdl-35920280

ABSTRACT

Telomere maintenance is essential for maintaining genome integrity in both normal and cancer cells. Without functional telomeres, chromosomes lose their protective structure and undergo fusion and breakage events that drive further genome instability, including cell arrest or death. One means by which this loss can be overcome in stem cells and cancer cells is via re-addition of G-rich telomeric repeats by the telomerase reverse transcriptase (TERT). During aging of somatic tissues, however, insufficient telomerase expression leads to a proliferative arrest called replicative senescence, which is triggered when telomeres reach a critically short threshold that induces a DNA damage response. Cancer cells express telomerase but do not entirely escape telomere instability as they often possess short telomeres; hence there is often selection for genetic alterations in the TERT promoter that result in increased telomerase expression. In this review, we discuss our current understanding of the consequences of telomere instability in cancer and aging, and outline the opportunities and challenges that lie ahead in exploiting the reliance of cells on telomere maintenance for preserving genome stability.


Subject(s)
Neoplasms , Telomerase , Aging/genetics , Cellular Senescence/genetics , Genomic Instability , Humans , Neoplasms/genetics , Telomerase/genetics , Telomerase/metabolism , Telomere/genetics , Telomere/metabolism
18.
BMC Mol Biol ; 12: 45, 2011 Oct 18.
Article in English | MEDLINE | ID: mdl-22011238

ABSTRACT

BACKGROUND: The first telomerase-associated protein (Est1) was isolated in yeast due to its essential role in telomere maintenance. The human counterparts EST1A, EST1B, and EST1C perform diverse functions in nonsense-mediated mRNA decay (NMD), telomere length homeostasis, and telomere transcription. Although Est1 and EST1A/B interact with the catalytic subunit of yeast and human telomerase (Est2 and TERT, respectively), the molecular determinants of these interactions have not been elaborated fully. RESULTS: To investigate the functional conservation of the EST1 protein family, we performed protein-protein interaction mapping and structure-function analysis. The domain in hEST1A most conserved between species, containing a TPR (tricotetrapeptide repeat), was sufficient for interaction of hEST1A with multiple fragments of hTERT including the N-terminus. Two mutations within the hTERT N-terminus that perturb in vivo function (NAAIRS(92), NAAIRS(122)) did not affect this protein interaction. ScEst1 hybrids containing the TPR of hEST1A, hEST1B, or hEST1C were expressed in yeast strains lacking EST1, yet they failed to complement senescence. Point mutations within and outside the cognate ScEst1 TPR, chosen to disrupt a putative protein interaction surface, resulted in telomere lengthening or shortening without affecting recruitment to telomeres. CONCLUSIONS: These results identify a domain encompassing the TPR of hEST1A as an hTERT interaction module. The TPR of S. cerevisiae Est1 is required for telomerase-mediated telomere length maintenance in a manner that appears separable from telomere recruitment. Discrete residues in or adjacent to the TPR of Est1 also regulate telomere length homeostasis.


Subject(s)
Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Telomerase/chemistry , Telomerase/metabolism , Telomere/metabolism , Humans , Protein Binding , Protein Structure, Tertiary , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Species Specificity , Telomerase/genetics , Telomere/genetics
19.
Nat Prod Res ; 35(24): 6175-6179, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33930985

ABSTRACT

There has been an increasing interest in natural products with the ability to inhibit telomerase activity in tumour and cancerous cells. Green tea catechins have been reported previously to inhibit telomerase, but it was unknown whether catechins from other plant sources could exhibit this property. We isolated 2-(3,4-dihydroxyphenyl)-3,4-dihydro-2H-chromene-3,5,7-triol (catechin without the presence of a galloyl unit) from the stem bark of B. africana, and tested its ability to inhibit recombinant, partially purified telomerase produced in rabbit reticulocyte lysates. The B. africana catechin inhibited the telomere extension activity of telomerase with an IC50 of approximately 4.7 µg/ml. This finding indicates that the galloyl unit may not be solely responsible for the inhibition of telomerase activity by catechins. This is the first report of the telomerase-inhibiting potential of catechin from the stem bark of B. africana.


Subject(s)
Catechin , Fabaceae , Telomerase , Animals , Catechin/pharmacology , Fabaceae/chemistry , Humans , Plant Bark/chemistry , Rabbits , Telomerase/antagonists & inhibitors
20.
Aging Cell ; 20(4): e13331, 2021 04.
Article in English | MEDLINE | ID: mdl-33660365

ABSTRACT

Telomere erosion in cells with insufficient levels of the telomerase reverse transcriptase (TERT), contributes to age-associated tissue dysfunction and senescence, and p53 plays a crucial role in this response. We undertook a genome-wide CRISPR screen to identify gene deletions that sensitized p53-positive human cells to telomerase inhibition. We uncovered a previously unannotated gene, C16ORF72, which we term Telomere Attrition and p53 Response 1 (TAPR1), that exhibited a synthetic-sick relationship with TERT loss. A subsequent genome-wide CRISPR screen in TAPR1-disrupted cells reciprocally identified TERT as a sensitizing gene deletion. Cells lacking TAPR1 or TERT possessed elevated p53 levels and transcriptional signatures consistent with p53 upregulation. The elevated p53 response in TERT- or TAPR1-deficient cells was exacerbated by treatment with the MDM2 inhibitor and p53 stabilizer nutlin-3a and coincided with a further reduction in cell fitness. Importantly, the sensitivity to treatment with nutlin-3a in TERT- or TAPR1-deficient cells was rescued by loss of p53. These data suggest that TAPR1 buffers against the deleterious consequences of telomere erosion or DNA damage by constraining p53. These findings identify C16ORF72/TAPR1 as new regulator at the nexus of telomere integrity and p53 regulation.


Subject(s)
Aminobenzoates , Intercellular Signaling Peptides and Proteins , Naphthalenes , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Signal Transduction , Telomerase , Tumor Suppressor Protein p53 , Humans , Aminobenzoates/pharmacology , Cell Line, Tumor , DNA Damage/drug effects , Gene Knockout Techniques , Imidazoles/pharmacology , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Naphthalenes/pharmacology , Piperazines/pharmacology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Signal Transduction/drug effects , Signal Transduction/genetics , Telomerase/antagonists & inhibitors , Telomerase/genetics , Telomerase/metabolism , Telomere/metabolism , Transduction, Genetic , Tumor Suppressor Protein p53/metabolism , Up-Regulation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL