Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Mol Microbiol ; 113(6): 1170-1188, 2020 06.
Article in English | MEDLINE | ID: mdl-32052506

ABSTRACT

The rare actinomycete Actinoplanes missouriensis forms sporangia, which open up and release zoospores in response to water. Here, we report a genetic and functional analysis of four FliA-family sigma factors, FliA1, FliA2, FliA3 and FliA4. Transcription of fliA1, fliA2 and fliA3 was directly activated by the global transcriptional activator TcrA during sporangium formation and dehiscence, while fliA4 was almost always transcribed at low levels. Gene disruption analysis showed that (a) deletion of fliA2 reduced the zoospore swimming speed by half, (b) the fliA1-fliA2 double-deletion mutant formed abnormal sporangia in which mutant spores ectopically germinated and (c) deletion of fliA3 induced no phenotypic changes in the wild-type and mutant strains of fliA1 and/or fliA2. Comparative RNA-Seq analyses among the wild-type and gene deletion mutant strains showed probable targets of each FliA-family sigma factor, indicating that FliA1- and FliA2-dependent promoters are quite similar to each other, while the FliA3-dependent promoter is somewhat different. Gene complementation experiments also indicated that the FliA1 regulon overlaps with the FliA2 regulon. These results demonstrate that A. missouriensis has developed a complex transcriptional regulatory network involving multiple FliA-family sigma factors for the accomplishment of its characteristic reproduction process, including sporangium formation, spore dormancy and sporangium dehiscence.


Subject(s)
Actinoplanes/genetics , Actinoplanes/metabolism , Bacterial Proteins/genetics , Sigma Factor/genetics , Sporangia/metabolism , Spores, Bacterial/metabolism , Actinoplanes/growth & development , Gene Expression Regulation, Bacterial/genetics , Promoter Regions, Genetic/genetics , Transcription, Genetic/genetics
2.
J Bacteriol ; 202(21)2020 10 08.
Article in English | MEDLINE | ID: mdl-32839172

ABSTRACT

The rare actinomycete Actinoplanes missouriensis forms terminal sporangia containing a few hundred flagellated spores. In response to water, the sporangia open and release the spores into external environments. The orphan response regulator TcrA functions as a global transcriptional activator during sporangium formation and dehiscence. Here, we report the characterization of an orphan hybrid histidine kinase, HhkA. Sporangia of an hhkA deletion mutant contained many distorted or ectopically germinated spores and scarcely opened to release the spores under sporangium dehiscence-inducing conditions. These phenotypic changes are quite similar to those observed in a tcrA deletion mutant. Comparative RNA sequencing analysis showed that genes controlled by HhkA mostly overlap TcrA-regulated genes. The direct interaction between HhkA and TcrA was suggested by a bacterial two-hybrid assay, but this was not conclusive. The phosphorylation of TcrA using acetyl phosphate as a phosphate donor markedly enhanced its affinity for the TcrA box sequences in the electrophoretic mobility shift assay. Taking these observations together with other results, we proposed that HhkA and TcrA compose a cognate two-component regulatory system, which controls the transcription of the genes involved in many aspects of morphological development, including sporangium formation, spore dormancy, and sporangium dehiscence in A. missouriensisIMPORTANCEActinoplanes missouriensis goes through complex morphological differentiation, including formation of flagellated spore-containing sporangia, sporangium dehiscence, swimming of zoospores, and germination of zoospores to filamentous growth. Although the orphan response regulator TcrA globally activates many genes required for sporangium formation, spore dormancy, and sporangium dehiscence, its partner histidine kinase remained unknown. Here, we analyzed the function of an orphan hybrid histidine kinase, HhkA, and proposed that HhkA constitutes a cognate two-component regulatory system with TcrA. That HhkA and TcrA homologues are highly conserved among the genus Actinoplanes and several closely related rare actinomycetes indicates that this possible two-component regulatory system is employed for complex morphological development in sporangium- and/or zoospore-forming rare actinomycetes.


Subject(s)
Actinoplanes/enzymology , Bacterial Proteins/metabolism , Histidine Kinase/metabolism , Spores, Bacterial/physiology , Transcription Factors/metabolism , Actinoplanes/physiology , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Histidine Kinase/genetics , Sequence Deletion , Spores, Bacterial/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL