Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
Tissue Cell ; 89: 102415, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38851032

ABSTRACT

Mesenchymal stem cells (MSCs) originating from the umbilical cord (UC) or Wharton's jelly (WJ) have attracted substantial interest due to their potential to augment therapeutic approaches for a wide range of disorders. These cells demonstrate a wide range of capabilities in the process of differentiating into a multitude of cell types. Additionally, they possess a significant capacity for proliferation and are conveniently accessible. Furthermore, they possess a status of being immune-privileged, exhibit minimal tumorigenic characteristics, and raise minimal ethical concerns. Consequently, they are well-suited candidates for tissue regeneration and the treatment of diseases. Additionally, UC-derived MSCs offer a substantial yield compared to other sources. The therapeutic effects of these MSCs are closely associated with the release of nanosized extracellular vesicles (EVs), including exosomes and microvesicles (MVs), containing lipids, microRNAs, and proteins that facilitate intercellular communication. Due to their reduced tumorigenic and immunogenic characteristics, in addition to their convenient manipulability, EVs have arisen as a viable alternative for the management of disorders. The favorable characteristics of UC-MSCs or WJ-MSCs and their EVs have generated significant attention in clinical investigations encompassing diverse pathologies. Therefore, we present a review encompassing current preclinical and clinical investigations, examining the implications of UC-MSCs in diverse diseases, including those affecting bone, cartilage, skin, liver, kidney, neural, lung, cardiovascular, muscle, and retinal tissues, as well as conditions like cancer, diabetes, sepsis, and others.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Umbilical Cord , Wharton Jelly , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Umbilical Cord/cytology , Wharton Jelly/cytology , Extracellular Vesicles/metabolism , Animals
2.
Ageing Res Rev ; 91: 102069, 2023 11.
Article in English | MEDLINE | ID: mdl-37696304

ABSTRACT

Learning and memory storage are the fundamental activities of the brain. Aberrant expression of synaptic molecular markers has been linked to memory impairment in AD. Aging is one of the risk factors linked to gradual memory loss. It is estimated that approximately 13 million people worldwide will have AD by 2050. A massive amount of oxidative stress is kept under control by a complex network of antioxidants, which occasionally fails and results in neuronal oxidative stress. Increasing evidence suggests that ROS may affect many pathological aspects of AD, including Aß accumulation, tau hyperphosphorylation, synaptic plasticity, and mitochondrial dysfunction, which may collectively result in neurodegeneration in the brain. Further investigation into the relationship between oxidative stress and AD may provide an avenue for effective preservation and pharmacological treatment of this neurodegenerative disease. In this review, we briefly summarize the cellular mechanism underlying Aß induced synaptic dysfunction. Since oxidative stress is common in the elderly and may contribute to the pathogenesis of AD, we also shed light on the role of antioxidant and inflammatory pathways in oxidative stress adaptation, which has a potential therapeutic target in neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Humans , Aged , Alzheimer Disease/metabolism , Oxidative Stress/physiology , Antioxidants/metabolism , Neuronal Plasticity , Biomarkers/metabolism , Amyloid beta-Peptides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL