Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Opt Lett ; 49(16): 4721-4724, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39146144

ABSTRACT

For the first time, to our knowledge, an all-solid transverse Anderson localizing optical fiber laser is demonstrated. A combination of the molten core and stack-and-draw fiber fabrication techniques is used to produce a 112 µm core diameter fiber that is a random array of Yb-doped high index and passive low index regions. A localized channel first assists in the guidance of amplified spontaneous emission before stimulating laser action, which occurs in the same channel via mixed Anderson localization and step index wave-guiding. Threshold behavior and lasing are monitored with changing output power slopes, beam profiling, spectral content, fluorescence clamping, and temporal intensity. The average output power is stable, while the laser wavelength hops between 1066 and 1088 nm. Lasing is highly directional along the fiber axis.

2.
Opt Lett ; 49(16): 4501-4504, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39146088

ABSTRACT

Recent progress in the fabrication of Yb-doped silicate fibers with low concentration quenching and low background absorption loss has led to the demonstration of anti-Stokes-fluorescence cooling in several aluminosilicate compositions. This breakthrough is critical to combat deleterious thermal effects due to the quantum defect in fiber lasers and amplifiers. Since cooling efficiencies remain low (1-2.7%), it is paramount to engineer compositions that improve this metric. We report a silica fiber with a core glass heavily doped with aluminum and phosphorus that sets, to our knowledge, a few new records. This few-mode fiber (16-µm core) was cooled in air by -0.25 K from room temperature with ∼0.5 W of 1040-nm power. The measured cooling efficiency is 3.3% at low pump power and 2.8% at the power that produced maximum cooling. The critical quenching concentration inferred from the measured dependence of cooling on pump power and careful calibration of the pump absorption and saturation is 79 wt.%. The inferred background absorption loss is 15 dB/km. Together with the fiber's average Yb concentration of 4.2 wt.%, these metrics rank among the best reported in a silica glass.

3.
Opt Lett ; 49(8): 2021-2024, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38621066

ABSTRACT

The focus of this study was the development of a second generation of fiber lasers internally cooled by anti-Stokes fluorescence. The laser consisted of a length of a single-mode fiber spliced to fiber Bragg gratings to form the optical resonator. The fiber was single-moded at the pump (1040 nm) and signal (1064 nm) wavelengths. Its core was heavily doped with Yb, in the initial form of CaF2 nanoparticles, and co-doped with Al to reduce quenching and improve the cooling efficiency. After optimizing the fiber length (4.1 m) and output-coupler reflectivity (3.3%), the fiber laser exhibited a threshold of 160 mW, an optical efficiency of 56.8%, and a radiation-balanced output power (no net heat generation) of 192 mW. On all three metrics, this performance is significantly better than the only previously reported radiation-balanced fiber laser, which is even more meaningful given that the small size of the single-mode fiber core (7.8-µm diameter). At the maximum output power (∼2 W), the average fiber temperature was still barely above room temperature (428 mK). This work demonstrates that with anti-Stokes pumping, it is possible to induce significant gain and energy storage in a small-core Yb-doped fiber while keeping the fiber cool.

4.
Appl Opt ; 63(16): 4234-4244, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38856598

ABSTRACT

An all-glass optical fiber capable of two distinct methods of optical thermometry is described. Specifically, a silica-clad, barium fluorosilicate glass core fiber, when pumped in the infrared, exhibits visibly intense green defect luminescence whose intensity and upper-state lifetime are strong functions of temperature. Intensity-based optical thermometry over the range from 25°C to 130°C is demonstrated, while a lifetime-based temperature sensitivity is shown from 25°C to 100°C. Time-domain measurements yield a relative sensitivity of 2.85% K -1 at 373 K (100°C). A proof-of-concept distributed sensor system using a commercial digital single-lens reflex camera is presented, resulting in a measured maximum relative sensitivity of 1.13% K -1 at 368 K (95°C). The sensing system described herein stands as a new blueprint for defect-based luminescence thermometry that takes advantage of pre-existing and relatively inexpensive optical components, and allows for the use of standard cameras or simply direct human observation.

5.
Opt Lett ; 47(2): 377-380, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35030610

ABSTRACT

There have been several demonstrations of single-frequency single-mode ytterbium-doped fiber lasers operating at a few hundred watts of power. A narrow spectral linewidth of these lasers is critical for many applications but has never been properly measured before at high powers. In this work, we report the first spectral linewidth measurement at kHz resolution of high-power single-frequency fiber lasers using a heterodyne technique and can confirm that these lasers can indeed operate at a few kHz spectral linewidth. Furthermore, we have improved the power from single-frequency single-mode all-solid photonic bandgap fiber lasers to 500 W using an improved photonic bandgap fiber.

6.
Opt Lett ; 47(7): 1626-1629, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35363694

ABSTRACT

A strong Raman enhancement to the four-wave mixing (FWM) conversion efficiency is obtained in a silicon core fiber (SCF) when pumped with a continuous-wave (CW) source in the telecom band. By tapering the SCFs to alter the core diameter and length, the role of phase-matching on the conversion enhancement is investigated, with a maximum Raman enhancement of ∼15 dB obtained for an SCF with a zero dispersion wavelength close to the pump. Simulations show that by optimizing the tapered waist diameter to overlap the FWM phase-matching with the peak Raman gain, it is possible to obtain large Raman enhanced FWM conversion efficiencies of up to ∼2 dB using modest CW pump powers over wavelengths covering the extended telecom bands.

7.
Opt Lett ; 47(10): 2590-2593, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35561408

ABSTRACT

The first observation of cooling by anti-Stokes pumping in nanoparticle-doped silica fibers is reported. Four Yb-doped fibers fabricated using conventional modified chemical vapor deposition (MCVD) techniques were evaluated, namely, an aluminosilicate fiber and three fibers in which the Yb ions were encapsulated in CaF2, SrF2, or BaF2 nanoparticles. The nanoparticles, which oxidize during preform processing, provide a modified chemical environment for the Yb3+ ions that is beneficial to cooling. When pumped at the near-optimum cooling wavelength of 1040 nm at atmospheric pressure, the fibers experienced a maximum measured temperature drop of 20.5 mK (aluminosilicate fiber), 26.2 mK (CaF2 fiber), and 16.7 mK (SrF2 fiber). The BaF2 fiber did not cool but warmed slightly. The three fibers that cooled had a cooling efficiency comparable to that of the best previously reported Yb-doped silica fiber that cooled. Data analysis shows that this efficiency is explained by the fibers' high critical quenching concentration and low residual absorptive loss (linked to sub-ppm OH contamination). This study demonstrates the large untapped potential of nanoparticle doping in the current search for silicate compositions that produce optimum anti-Stokes cooling.

8.
Opt Express ; 29(3): 3543-3552, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33770951

ABSTRACT

High speed optical modulation of THz radiation is of interest for information processing and communications applications. In this paper infrared femtosecond pulses are used to generate free carriers that reduce the THz transmission of silicon based waveguides over a broad spectral range. Up to 96% modulation is observed from 0.5 to 7 THz in an optical fiber with a 210 µm diameter gold-doped silicon core. The observed carrier recombination time of 2.0 ± 0.2 ns makes this material suitable for high speed all-optical signal processing. These results show both enhanced modulation depth and reduced carrier lifetime when compared to the performance of a high resistivity float zone silicon rectangular guide with comparable cross sectional area.

9.
Opt Express ; 29(19): 30384-30391, 2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34614763

ABSTRACT

Using an ytterbium-doped fiber with a 50 µm core and 0.028 NA, a pulse energy of 4.8 mJ was achieved directly from a single-mode Q-switched fiber laser. The repetition rate was 10 kHz and the average power was 48.4 W. The slope efficiencies with regard to the absorbed and launched pump power were ∼74% and ∼59% respectively. The pulse width decreased with increasing pump power. The 4.8 mJ pulse had a FWHM width of ∼300 ns. A shorter pulse of ∼200 ns FWHM was also achieved at 2.06 mJ in another configuration. The M2 was below 1.3 at all pulse energies. This work demonstrates record pulse energy directly from a single-mode Q-switched fiber laser and the feasibility of operating such a laser with high efficiencies.

10.
Opt Lett ; 46(18): 4458-4461, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34525021

ABSTRACT

Further power scaling of narrow-linewidth fiber lasers is critical for beam combining. Using all-solid photonic bandgap fibers with large effective mode areas and strong higher-order-mode suppression is an interesting approach. Previously, we demonstrated ∼400W single-frequency single-mode power at 1064 nm from a 50/400 photonic bandgap fiber amplifier, limited only by transverse mode instability (TMI). In this work, we demonstrate a TMI-limited single-mode power of 1.37 kW from a monolithic fiber amplifier with a 25/400 photonic bandgap fiber, the highest output power from a photonic bandgap fiber demonstrated to date, to the best of our knowledge. The spectral linewidth is broadened to ∼8GHz to suppress stimulated Brillouin scattering.

11.
Acta Neuropathol ; 139(2): 383-401, 2020 02.
Article in English | MEDLINE | ID: mdl-31696318

ABSTRACT

The vertebrate CNS is surrounded by the meninges, a protective barrier comprised of the outer dura mater and the inner leptomeninges, which includes the arachnoid and pial layers. While the dura mater contains lymphatic vessels, no conventional lymphatics have been found within the brain or leptomeninges. However, non-lumenized cells called Brain/Mural Lymphatic Endothelial Cells or Fluorescent Granule Perithelial cells (muLECs/BLECs/FGPs) that share a developmental program and gene expression with peripheral lymphatic vessels have been described in the meninges of zebrafish. Here we identify a structurally and functionally similar cell type in the mammalian leptomeninges that we name Leptomeningeal Lymphatic Endothelial Cells (LLEC). As in zebrafish, LLECs express multiple lymphatic markers, containing very large, spherical inclusions, and develop independently from the meningeal macrophage lineage. Mouse LLECs also internalize macromolecules from the cerebrospinal fluid, including Amyloid-ß, the toxic driver of Alzheimer's disease progression. Finally, we identify morphologically similar cells co-expressing LLEC markers in human post-mortem leptomeninges. Given that LLECs share molecular, morphological, and functional characteristics with both lymphatics and macrophages, we propose they represent a novel, evolutionary conserved cell type with potential roles in homeostasis and immune organization of the meninges.


Subject(s)
Brain/pathology , Endothelial Cells/pathology , Endothelial Cells/physiology , Lymphatic System/pathology , Meninges/pathology , Adult , Aged , Aged, 80 and over , Amyloid beta-Peptides , Animals , Female , Humans , Male , Mice , Zebrafish
12.
Opt Lett ; 45(3): 599-602, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-32004261

ABSTRACT

An all-solid transverse Anderson localizing optical fiber (TALOF) was fabricated using a novel combination of the stack-and-draw and molten core methods. Strong Anderson localization is observed in multiple regions of the fiber cross section associated with the higher index strontium aluminosilicate phases randomly arranged within a pure silica matrix. Further, to the best of our knowledge, nonlinear four-wave mixing is reported for the first time in a TALOF.

13.
Development ; 143(7): 1087-98, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26893342

ABSTRACT

Maintaining neurogenesis in growing tissues requires a tight balance between progenitor cell proliferation and differentiation. In the zebrafish retina, neuronal differentiation proceeds in two stages with embryonic retinal progenitor cells (RPCs) of the central retina accounting for the first rounds of differentiation, and stem cells from the ciliary marginal zone (CMZ) being responsible for late neurogenesis and growth of the eye. In this study, we analyse two mutants with small eyes that display defects during both early and late phases of retinal neurogenesis. These mutants carry lesions in gdf6a, a gene encoding a BMP family member previously implicated in dorsoventral patterning of the eye. We show that gdf6a mutant eyes exhibit expanded retinoic acid (RA) signalling and demonstrate that exogenous activation of this pathway in wild-type eyes inhibits retinal growth, generating small eyes with a reduced CMZ and fewer proliferating progenitors, similar to gdf6a mutants. We provide evidence that RA regulates the timing of RPC differentiation by promoting cell cycle exit. Furthermore, reducing RA signalling in gdf6a mutants re-establishes appropriate timing of embryonic retinal neurogenesis and restores putative stem and progenitor cell populations in the CMZ. Together, our results support a model in which dorsally expressed gdf6a limits RA pathway activity to control the transition from proliferation to differentiation in the growing eye.


Subject(s)
Growth Differentiation Factor 6/genetics , Neurogenesis/genetics , Retina/embryology , Tretinoin/metabolism , Zebrafish Proteins/genetics , Zebrafish/embryology , Animals , Bone Morphogenetic Proteins/metabolism , Cell Cycle/genetics , Cell Proliferation , Embryo, Nonmammalian/embryology , Neurogenesis/physiology , Signal Transduction/genetics , Stem Cells/cytology
14.
Opt Express ; 27(18): 24972-24977, 2019 Sep 02.
Article in English | MEDLINE | ID: mdl-31510377

ABSTRACT

We demonstrate that the strong 4-level Yb emission in a fiber laser can be almost completely suppressed in an Yb all-solid double-clad photonic bandgap fiber, resulting in highly efficient high-power monolithic Yb fiber lasers operating at the 3-level system. We have achieved single-mode continuous wave laser output power of ~151W at ~978nm with an efficiency of 63% with respect to the launched pump power in a practical monolithic fiber laser configuration for the first time. The demonstrated power in this work are setting new records for diffraction-limited double-clad fiber lasers operating at ~978nm.

15.
Opt Lett ; 44(4): 807-810, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30767992

ABSTRACT

Efficient cladding-pumped three-level Yb fiber lasers are difficult to achieve due to the competing four-level system and necessary high inversions. We demonstrate an efficiency of ∼62.7% versus a coupled pump, a record for cladding-pumped fiber lasers with a single-pass pump. 84 W at ∼978 nm with ∼1.12M2 was achieved, a record power for flexible fibers. Amplified spontaneous emission was suppressed by >40 dB. The efficiency is quantum-limited ∼94% versus an absorbed pump. This is made possible by the use of a photo-darkening-free Yb phosphosilicate core and recent progress in single-mode large-core all-solid photonic bandgap fiber designs, which provide the necessary large core-to-cladding ratio and suppression of the four-level system.

16.
Opt Express ; 26(3): 3138-3144, 2018 Feb 05.
Article in English | MEDLINE | ID: mdl-29401845

ABSTRACT

Lowering the quantum defect by tandem pumping with fiber lasers at 1018nm was critical for achieving the record 10kW single-mode ytterbium fiber laser. Here we report the demonstration of an efficient directly-diode-pumped single-mode ytterbium fiber laser with 240W at 1018nm. The key for the combination of high efficiency, high power and single-mode at 1018nm is an ytterbium-doped 50µm/400µm all-solid photonic bandgap fiber, which has a practical all-solid design and a pump cladding much larger than those used in previous demonstrations of single-mode 1018nm ytterbium fiber lasers, enabling higher pump powers. Efficient high-power single-mode 1018nm fiber laser is critical for further power scaling of fiber lasers and the all-solid photonic bandgap fiber can potentially be a significant enabling technology.

17.
Opt Express ; 25(20): 24157-24163, 2017 Oct 02.
Article in English | MEDLINE | ID: mdl-29041361

ABSTRACT

Reported here is the fabrication of tapered silicon core fibers possessing a nano-spike input that facilitates their seamless splicing to conventional single mode fibers. A proof-of-concept 30 µm cladding diameter fiber-based device is demonstrated with nano-spike coupling and propagation losses below 4 dB and 2 dB/cm, respectively. Finite-element-method-based simulations show that the nano-spike coupling losses could be reduced to below 1 dB by decreasing the cladding diameters down to 10 µm. Such efficient and robust integration of the silicon core fibers with standard fiber devices will help to overcome significant barriers for all-fiber nonlinear photonics and optoelectronics.

18.
Opt Lett ; 42(18): 3553, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28914899

ABSTRACT

We correct an error of the nonlinear refractive index used in our original paper.

19.
J Exp Biol ; 220(Pt 6): 969-983, 2017 03 15.
Article in English | MEDLINE | ID: mdl-27980125

ABSTRACT

Preconditioning to non-stressful warming can protect some symbiotic cnidarians against the high temperature-induced collapse of their mutualistic endosymbiosis with photosynthetic dinoflagellates (Symbiodinium spp.), a process known as bleaching. Here, we sought to determine whether such preconditioning is underpinned by differential regulation of aerobic respiration. We quantified in vivo metabolism and mitochondrial respiratory enzyme activity in the naturally symbiotic sea anemone Exaiptasia pallida preconditioned to 30°C for >7 weeks as well as anemones kept at 26°C. Preconditioning resulted in increased Symbiodinium photosynthetic activity and holobiont (host+symbiont) respiration rates. Biomass-normalised activities of host respiratory enzymes [citrate synthase and the mitochondrial electron transport chain (mETC) complexes I and IV] were higher in preconditioned animals, suggesting that increased holobiont respiration may have been due to host mitochondrial biogenesis and/or enlargement. Subsequent acute heating of preconditioned and 'thermally naive' animals to 33°C induced dramatic increases in host mETC complex I and Symbiodinium mETC complex II activities only in thermally naive E. pallida These changes were not reflected in the activities of other respiratory enzymes. Furthermore, bleaching in preconditioned E. pallida (defined as the significant loss of symbionts) was delayed by several days relative to the thermally naive group. These findings suggest that changes to mitochondrial biogenesis and/or function in symbiotic cnidarians during warm preconditioning might play a protective role during periods of exposure to stressful heating.


Subject(s)
Acclimatization , Dinoflagellida/physiology , Sea Anemones/physiology , Symbiosis , Animals , Dinoflagellida/enzymology , Heat-Shock Response , Hot Temperature , Mitochondria/enzymology , Mitochondria/metabolism , Oxygen Consumption , Photosynthesis , Sea Anemones/enzymology
20.
Environ Microbiol ; 18(12): 5204-5217, 2016 12.
Article in English | MEDLINE | ID: mdl-27648935

ABSTRACT

Symbioses between cnidarians and symbiotic dinoflagellates (Symbiodinium) are ecologically important and physiologically diverse. This diversity contributes to the spatial distribution of specific cnidarian-Symbiodinium associations. Physiological variability also exists within Symbiodinium species, yet we know little regarding its relevance for the establishment of symbiosis under different environmental conditions. Two putatively conspecific Symbiodinium strains (both ITS2-type A4) were isolated from the sea anemone Exaiptasia pallida and placed into unialgal culture. Thermal tolerance of these cultures was compared following heating from 26°C to 33.5°C over 18 days. Photosystem II function was negatively impacted by heating in one strain while PSII function in the other showed little response to elevated temperature. Additionally, infection of Symbiodinium cells into aposymbiotic anemones was assessed for both strains at 26°C and 30.5°C. The heat-sensitive strain had greater infection success at 26°C, while there was no difference in infection between the two strains at the higher temperature. Results from this work suggest that variability in thermal optima or -tolerance within Symbiodinium spp. has relevance for early stages of host-Symbiodinium interactions. Thus, varying infectiousness among differentially heat-sensitive Symbiodinium strains could provide a mechanism for the emergence of novel and potentially resilient cnidarian-Symbiodinium associations in a rapidly warming environment.


Subject(s)
Dinoflagellida/physiology , Sea Anemones/parasitology , Animals , Dinoflagellida/classification , Dinoflagellida/isolation & purification , Photosystem II Protein Complex/genetics , Photosystem II Protein Complex/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Sea Anemones/physiology , Symbiosis , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL