Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters

Country/Region as subject
Publication year range
1.
BMC Med ; 22(1): 147, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38561764

ABSTRACT

BACKGROUND: Thyroid nodule (TN) patients in China are subject to overdiagnosis and overtreatment. The implementation of existing technologies such as thyroid ultrasonography has indeed contributed to the improved diagnostic accuracy of TNs. However, a significant issue persists, where many patients undergo unnecessary biopsies, and patients with malignant thyroid nodules (MTNs) are advised to undergo surgery therapy. METHODS: This study included a total of 293 patients diagnosed with TNs. Differential methylation haplotype blocks (MHBs) in blood leukocytes between MTNs and benign thyroid nodules (BTNs) were detected using reduced representation bisulfite sequencing (RRBS). Subsequently, an artificial intelligence blood leukocyte DNA methylation (BLDM) model was designed to optimize the management and treatment of patients with TNs for more effective outcomes. RESULTS: The DNA methylation profiles of peripheral blood leukocytes exhibited distinctions between MTNs and BTNs. The BLDM model we developed for diagnosing TNs achieved an area under the curve (AUC) of 0.858 in the validation cohort and 0.863 in the independent test cohort. Its specificity reached 90.91% and 88.68% in the validation and independent test cohorts, respectively, outperforming the specificity of ultrasonography (43.64% in the validation cohort and 47.17% in the independent test cohort), albeit with a slightly lower sensitivity (83.33% in the validation cohort and 82.86% in the independent test cohort) compared to ultrasonography (97.62% in the validation cohort and 100.00% in the independent test cohort). The BLDM model could correctly identify 89.83% patients whose nodules were suspected malignant by ultrasonography but finally histological benign. In micronodules, the model displayed higher specificity (93.33% in the validation cohort and 92.00% in the independent test cohort) and accuracy (88.24% in the validation cohort and 87.50% in the independent test cohort) for diagnosing TNs. This performance surpassed the specificity and accuracy observed with ultrasonography. A TN diagnostic and treatment framework that prioritizes patients is provided, with fine-needle aspiration (FNA) biopsy performed only on patients with indications of MTNs in both BLDM and ultrasonography results, thus avoiding unnecessary biopsies. CONCLUSIONS: This is the first study to demonstrate the potential of non-invasive blood leukocytes in diagnosing TNs, thereby making TN diagnosis and treatment more efficient in China.


Subject(s)
Thyroid Neoplasms , Thyroid Nodule , Humans , Thyroid Nodule/diagnostic imaging , Thyroid Nodule/genetics , Prospective Studies , Artificial Intelligence , Ultrasonography , Thyroid Neoplasms/diagnosis , Thyroid Neoplasms/pathology , Thyroid Neoplasms/surgery , Retrospective Studies
2.
BMC Med ; 20(1): 458, 2022 11 25.
Article in English | MEDLINE | ID: mdl-36434648

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) has the lowest overall survival rate primarily due to the late onset of symptoms and rapid progression. Reliable and accurate tests for early detection are lacking. We aimed to develop a noninvasive test for early PDAC detection by capturing the circulating tumour DNA (ctDNA) methylation signature in blood. METHODS: Genome-wide methylation profiles were generated from PDAC and nonmalignant tissues and plasma. Methylation haplotype blocks (MHBs) were examined to discover de novo PDAC markers. They were combined with multiple cancer markers and screened for PDAC classification accuracy. The most accurate markers were used to develop PDACatch, a targeted methylation sequencing assay. PDACatch was applied to additional PDAC and healthy plasma cohorts to train, validate and independently test a PDAC-discriminating classifier. Finally, the classifier was compared and integrated with carbohydrate antigen 19-9 (CA19-9) to evaluate and maximize its accuracy and utility. RESULTS: In total, 90 tissues and 546 plasma samples were collected from 232 PDAC patients, 25 chronic pancreatitis (CP) patients and 323 healthy controls. Among 223 PDAC cases with known stage information, 43/119/38/23 cases were of Stage I/II/III/IV. A total of 171 de novo PDAC-specific markers and 595 multicancer markers were screened for PDAC classification accuracy. The top 185 markers were included in PDACatch, from which a 56-marker classifier for PDAC plasma was trained, validated and independently tested. It achieved an area under the curve (AUC) of 0.91 in both the validation (31 PDAC, 26 healthy; sensitivity = 84%, specificity = 89%) and independent tests (74 PDAC, 65 healthy; sensitivity = 82%, specificity = 88%). Importantly, the PDACatch classifier detected CA19-9-negative PDAC plasma at sensitivities of 75 and 100% during the validation and independent tests, respectively. It was more sensitive than CA19-9 in detecting Stage I (sensitivity = 80 and 68%, respectively) and early-stage (Stage I-IIa) PDAC (sensitivity = 76 and 70%, respectively). A combinatorial classifier integrating PDACatch and CA19-9 outperformed (AUC=0.94) either PDACatch (0.91) or CA19-9 (0.89) alone (p < 0.001). CONCLUSIONS: The PDACatch assay demonstrated high sensitivity for early PDAC plasma, providing potential utility for noninvasive detection of early PDAC and indicating the effectiveness of methylation haplotype analyses in discovering robust cancer markers.


Subject(s)
Carcinoma, Pancreatic Ductal , Circulating Tumor DNA , Pancreatic Neoplasms , Humans , Circulating Tumor DNA/genetics , CA-19-9 Antigen , Methylation , Biomarkers, Tumor/genetics , Case-Control Studies , Carcinoma, Pancreatic Ductal/diagnosis , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms
3.
Genome Res ; 27(1): 64-74, 2017 01.
Article in English | MEDLINE | ID: mdl-27979994

ABSTRACT

Histone modifications are frequently used as markers for enhancer states, but how to interpret enhancer states in the context of embryonic development is not clear. The poised enhancer signature, involving H3K4me1 and low levels of H3K27ac, has been reported to mark inactive enhancers that are poised for future activation. However, future activation is not always observed, and alternative reasons for the widespread occurrence of this enhancer signature have not been investigated. By analyzing enhancers during dorsal-ventral (DV) axis formation in the Drosophila embryo, we find that the poised enhancer signature is specifically generated during patterning in the tissue where the enhancers are not induced, including at enhancers that are known to be repressed by a transcriptional repressor. These results suggest that, rather than serving exclusively as an intermediate step before future activation, the poised enhancer state may be a mark for spatial regulation during tissue patterning. We discuss the possibility that the poised enhancer state is more generally the result of repression by transcriptional repressors.


Subject(s)
Body Patterning/genetics , Embryonic Development/genetics , Enhancer Elements, Genetic/genetics , Transcription, Genetic , Animals , Drosophila/genetics , Drosophila/growth & development , Epigenetic Repression/genetics , Gene Expression Regulation, Developmental , Histone Code/genetics , Histone-Lysine N-Methyltransferase/genetics , Transcription Factors/genetics
4.
J Biol Chem ; 289(21): 14981-95, 2014 May 23.
Article in English | MEDLINE | ID: mdl-24727477

ABSTRACT

Transcription by RNA polymerase II (Pol II) in eukaryotes requires the Mediator complex, and often involves chromatin remodeling and histone eviction at active promoters. Here we address the role of Mediator in recruitment of the Swi/Snf chromatin remodeling complex and its role, along with components of the preinitiation complex (PIC), in histone eviction at inducible and constitutively active promoters in the budding yeast Saccharomyces cerevisiae. We show that recruitment of the Swi/Snf chromatin remodeling complex to the induced CHA1 promoter, as well as its association with several constitutively active promoters, depends on the Mediator complex but is independent of Mediator at the induced MET2 and MET6 genes. Although transcriptional activation and histone eviction at CHA1 depends on Swi/Snf, Swi/Snf recruitment is not sufficient for histone eviction at the induced CHA1 promoter. Loss of Swi/Snf activity does not affect histone occupancy of several constitutively active promoters; in contrast, higher histone occupancy is seen at these promoters in Mediator and PIC component mutants. We propose that an initial activator-dependent, nucleosome remodeling step allows PIC components to outcompete histones for occupancy of promoter sequences. We also observe reduced promoter association of Mediator and TATA-binding protein in a Pol II (rpb1-1) mutant, indicating mutually cooperative binding of these components of the transcription machinery and indicating that it is the PIC as a whole whose binding results in stable histone eviction.


Subject(s)
Histones/metabolism , Mediator Complex/metabolism , Promoter Regions, Genetic/genetics , RNA Polymerase II/metabolism , Saccharomyces cerevisiae Proteins/metabolism , TATA-Box Binding Protein/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Blotting, Northern , Chromatin/genetics , Chromatin/metabolism , Chromatin Assembly and Disassembly , Chromatin Immunoprecipitation , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Mediator Complex/genetics , Mutation , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Nucleosomes/genetics , Nucleosomes/metabolism , Protein Binding , RNA Polymerase II/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , TATA-Box Binding Protein/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription Initiation, Genetic , Transcriptional Activation
5.
J Clin Endocrinol Metab ; 109(9): 2210-2219, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-38450587

ABSTRACT

CONTEXT: Accurately distinguishing between benign thyroid nodules (BTNs) and papillary thyroid cancers (PTCs) with current conventional methods poses a significant challenge. OBJECTIVE: We identify DNA methylation markers of immune response-related genes for distinguishing BTNs and PTCs. METHODS: In this study, we analyzed a public reduced representative bisulfite sequencing dataset and revealed distinct methylation patterns associated with immune signals in PTCs and BTNs. Based on these findings, we developed a diagnostic classifier named the Methylation-based Immune Response Signature (MeIS), which was composed of 15 DNA methylation markers associated with immune response-related genes. We validated MeIS's performance in 2 independent cohorts: Z.S.'s retrospective cohort (50 PTC and 18 BTN surgery-leftover samples) and Z.S.'s preoperative cohort (31 PTC and 30 BTN fine-needle aspiration samples). RESULTS: The MeIS classifier demonstrated significant clinical promise, achieving areas under the curve of 0.96, 0.98, 0.89, and 0.90 in the training set, validation set, Z.S.'s retrospective cohort, and Z.S.'s preoperative cohort, respectively. For the cytologically indeterminate thyroid nodules, in Z.S.'s retrospective cohort, MeIS exhibited a sensitivity of 91% and a specificity of 82%; in Z.S.'s preoperative cohort, MeIS achieved a sensitivity of 84% and a specificity of 74%. Additionally, combining MeIS and BRAF V600E detection improved the detecting performance of cytologically indeterminate thyroid nodules, yielding sensitivities of 98% and 87%, and specificities of 82% and 74% in Z.S.'s retrospective cohort and Z.S.'s preoperative cohort, respectively. CONCLUSION: The 15 markers we identified can be employed to improve the diagnostic of cytologically indeterminate thyroid nodules.


Subject(s)
DNA Methylation , Thyroid Cancer, Papillary , Thyroid Neoplasms , Thyroid Nodule , Humans , Thyroid Nodule/genetics , Thyroid Nodule/pathology , Thyroid Nodule/diagnosis , Male , Female , Retrospective Studies , Middle Aged , Adult , Thyroid Neoplasms/genetics , Thyroid Neoplasms/diagnosis , Thyroid Neoplasms/pathology , Thyroid Neoplasms/immunology , Diagnosis, Differential , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/diagnosis , Thyroid Cancer, Papillary/pathology , Thyroid Cancer, Papillary/immunology , Biomarkers, Tumor/genetics , Biopsy, Fine-Needle , Aged
6.
Lung Cancer ; 195: 107930, 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39146624

ABSTRACT

BACKGROUND: With the popularization of computed tomography, more and more pulmonary nodules (PNs) are being detected. Risk stratification of PNs is essential for detecting early-stage lung cancer while minimizing the overdiagnosis of benign nodules. This study aimed to develop a circulating tumor DNA (ctDNA) methylation-based, non-invasive model for the risk stratification of PNs. METHODS: A blood-based assay ("LUNG-TRAC") was designed to include novel lung cancer ctDNA methylation markers identified from in-house reduced representative bisulfite sequencing data and known markers from the literature. A stratification model was trained based on 183 ctDNA samples derived from patients with benign or malignant PNs and validated in 62 patients. LUNG-TRAC was further single-blindly tested in a single- and multi-center cohort. RESULTS: The LUNG-TRAC model achieved an area under the curve (AUC) of 0.810 (sensitivity = 74.4 % and specificity = 73.7 %) in the validation set. Two test sets were used to evaluate the performance of LUNG-TRAC, with an AUC of 0.815 in the single-center test (N = 61; sensitivity = 67.5 % and specificity = 76.2 %) and 0.761 in the multi-center test (N = 95; sensitivity = 50.7 % and specificity = 80.8 %). The clinical utility of LUNG-TRAC was further assessed by comparing it to two established risk stratification models: the Mayo Clinic and Veteran Administration models. It outperformed both in the validation and the single-center test sets. CONCLUSION: The LUNG-TRAC model demonstrated accuracy and consistency in stratifying PNs for the risk of malignancy, suggesting its utility as a non-invasive diagnostic aid for early-stage peripheral lung cancer. CLINICAL TRIAL REGISTRATION: www. CLINICALTRIALS: gov (NCT03989219).

7.
Nucleic Acids Res ; 39(6): 2032-44, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21081559

ABSTRACT

The packaging of eukaryotic DNA into chromatin has profound consequences for gene regulation, as well as for other DNA transactions such as recombination, replication and repair. Understanding how this packaging is determined is consequently a pressing problem in molecular genetics. DNA sequence, chromatin remodelers and transcription factors affect chromatin structure, but the scope of these influences on genome-wide nucleosome occupancy patterns remains uncertain. Here, we use high resolution tiling arrays to examine the contributions of two general regulatory factors, Abf1 and Rap1, to nucleosome occupancy in Saccharomyces cerevisiae. These factors have each been shown to bind to a few hundred promoters, but we find here that thousands of loci show localized regions of altered nucleosome occupancy within 1 h of loss of Abf1 or Rap1 binding, and that altered chromatin structure can occur via binding sites having a wide range of affinities. These results indicate that DNA-binding transcription factors affect chromatin structure, and probably dynamics, throughout the genome to a much greater extent than previously appreciated.


Subject(s)
Chromatin/chemistry , DNA-Binding Proteins/physiology , Saccharomyces cerevisiae Proteins/physiology , Saccharomyces cerevisiae/genetics , Telomere-Binding Proteins/physiology , Transcription Factors/physiology , Binding Sites , DNA-Binding Proteins/analysis , Genome, Fungal , Nucleosomes/chemistry , Promoter Regions, Genetic , Saccharomyces cerevisiae Proteins/analysis , Shelterin Complex , Telomere-Binding Proteins/analysis , Transcription Factors/analysis
8.
Clin Epigenetics ; 15(1): 130, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37582783

ABSTRACT

BACKGROUND: An accurate and reproducible next-generation sequencing platform is essential to identify malignancy-related abnormal DNA methylation changes and translate them into clinical applications including cancer detection, prognosis, and surveillance. However, high-quality DNA methylation sequencing has been challenging because poor sequence diversity of the bisulfite-converted libraries severely impairs sequencing quality and yield. In this study, we tested MGISEQ-2000 Sequencer's capability of DNA methylation sequencing with a published non-invasive pancreatic cancer detection assay, using NovaSeq6000 as the benchmark. RESULTS: We sequenced a series of synthetic cell-free DNA (cfDNA) samples with different tumor fractions and found MGISEQ-2000 yielded data with similar quality as NovaSeq6000. The methylation levels measured by MGISEQ-2000 demonstrated high consistency with NovaSeq6000. Moreover, MGISEQ-2000 showed a comparable analytic sensitivity with NovaSeq6000, suggesting its potential for clinical detection. As to evaluate the clinical performance of MGISEQ-2000, we sequenced 24 clinical samples and predicted the pathology of the samples with a clinical diagnosis model, PDACatch classifier. The clinical model performance of MGISEQ-2000's data was highly consistent with that of NovaSeq6000's data, with the area under the curve of 1. We also tested the model's robustness with MGISEQ-2000's data when reducing the sequencing depth. The results showed that MGISEQ-2000's data showed matching robustness of the PDACatch classifier with NovaSeq6000's data. CONCLUSIONS: Taken together, MGISEQ-2000 demonstrated similar data quality, consistency of the methylation levels, comparable analytic sensitivity, and matching clinical performance, supporting its application in future non-invasive early cancer detection investigations by detecting distinct methylation patterns of cfDNAs.


Subject(s)
DNA Methylation , Sulfites , Humans , Sequence Analysis, DNA/methods , Prognosis , High-Throughput Nucleotide Sequencing/methods
9.
EBioMedicine ; 90: 104497, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36868052

ABSTRACT

BACKGROUND: Cell-free DNA (cfDNA) is being explored as biomarker for non-invasive diagnosis of cancer. We aimed to establish a cfDNA-based DNA methylation marker panel to differentially diagnose papillary thyroid carcinoma (PTC) from benign thyroid nodule (BTN). METHODS: 220 PTC- and 188 BTN patients were enrolled. Methylation markers of PTC were identified from patients' tissue and plasma by reduced representation bisulfite sequencing and methylation haplotype analyses. They were combined with PTC markers from literatures and were tested on additional PTC and BTN samples to verify PTC-detecting ability using targeted methylation sequencing. Top markers were developed into ThyMet and were tested in 113 PTC and 88 BTN cases to train and validate a PTC-plasma classifier. Integration of ThyMet and thyroid ultrasonography was explored to improve accuracy. FINDINGS: From 859 potential PTC plasma-discriminating markers that include 81 markers identified by us, the top 98 most PTC plasma-discriminating markers were selected for ThyMet. A 6-marker ThyMet classifier for PTC plasma was trained. In validation it achieved an Area Under the Curve (AUC) of 0.828, similar to thyroid ultrasonography (0.833) but at higher specificity (0.722 and 0.625 for ThyMet and ultrasonography, respectively). A combinatorial classifier by them, ThyMet-US, improved AUC to 0.923 (sensitivity = 0.957, specificity = 0.708). INTERPRETATION: The ThyMet classifier improved the specificity of differentiating PTC from BTN over ultrasonography. The combinatorial ThyMet-US classifier may be effective in preoperative diagnosis of PTC. FUNDING: This work was supported by the grants from National Natural Science Foundation of China (82072956 and 81772850).


Subject(s)
Thyroid Neoplasms , Thyroid Nodule , Humans , Thyroid Cancer, Papillary/diagnosis , Thyroid Cancer, Papillary/genetics , Thyroid Nodule/diagnosis , Thyroid Nodule/genetics , Thyroid Nodule/pathology , DNA Methylation , Thyroid Neoplasms/diagnosis , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Biomarkers , Biomarkers, Tumor/metabolism
11.
Proc Natl Acad Sci U S A ; 106(39): 16734-9, 2009 Sep 29.
Article in English | MEDLINE | ID: mdl-19805365

ABSTRACT

Mediator is a large, multisubunit complex that is essential for transcription of mRNA by RNA Pol II in eukaryotes and is believed to bridge transcriptional activators and the general transcription machinery. However, several recent studies suggest that the requirement for Mediator during transcriptional activation is not universal, but rather activator dependent, and may be indirect for some genes. Here we have investigated Mediator association with several constitutively transcribed genes in yeast by comparing a yeast strain that harbors a temperature-sensitive mutation in an essential Mediator subunit, Srb4, with its wild-type (WT) counterpart. We find modest association of Mediator with constitutively active genes and show that this association is strongly decreased in srb4 ts yeast, whereas association with a nontranscribed region or repressed gene promoters is lower and unaffected in the mutant yeast. The tail module of Mediator remains associated with ribosomal protein (RP) gene promoters in srb4 ts yeast, while subunits from the head and middle modules are lost. Tail module association at Rap1-dependent gene promoters is lost in rap1 ts yeast, indicating that Rap1 is required for Mediator recruitment at these gene promoters and that its recruitment occurs via the tail module. Pol II association is also rapidly and severely affected in srb4 ts yeast, indicating that Mediator is directly required for pol II association at constitutively transcribed genes. Our results are consistent with Mediator functioning as a general transcription factor in yeast.


Subject(s)
Mediator Complex/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Transcription, Genetic , DNA Polymerase II/genetics , DNA Polymerase II/metabolism , Genes, Fungal , Promoter Regions, Genetic , RNA, Messenger/metabolism , Saccharomyces cerevisiae Proteins/genetics , Shelterin Complex , Telomere-Binding Proteins/genetics , Telomere-Binding Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Activation
12.
Eur J Med Res ; 27(1): 276, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36464701

ABSTRACT

BACKGROUND AND AIM: Preoperative evaluation of microvascular invasion (MVI) in patients with hepatocellular carcinoma (HCC) is important for surgical strategy determination. We aimed to develop and establish a preoperative predictive model for MVI status based on DNA methylation markers. METHODS: A total of 35 HCC tissues and the matched peritumoral normal liver tissues as well as 35 corresponding HCC patients' plasma samples and 24 healthy plasma samples were used for genome-wide methylation sequencing and subsequent methylation haplotype block (MHB) analysis. Predictive models were constructed based on selected MHB markers and 3-cross validation was used. RESULTS: We grouped 35 HCC patients into 2 categories, including the MVI- group with 17 tissue and plasma samples, and MVI + group with 18 tissue and plasma samples. We identified a tissue DNA methylation signature with an AUC of 98.0% and a circulating free DNA (cfDNA) methylation signature with an AUC of 96.0% for HCC detection. Furthermore, we established a tissue DNA methylation signature for MVI status prediction, and achieved an AUC of 85.9%. Based on the MVI status predicted by the DNA methylation signature, the recurrence-free survival (RFS) and overall survival (OS) were significantly better in the predicted MVI- group than that in the predicted MVI + group. CONCLUSIONS: In this study, we identified a cfDNA methylation signature for HCC detection and a tissue DNA methylation signature for MVI status prediction with high accuracy.


Subject(s)
Carcinoma, Hepatocellular , Cell-Free Nucleic Acids , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/genetics , DNA Methylation/genetics , Liver Neoplasms/diagnosis , Liver Neoplasms/genetics , Cell-Free Nucleic Acids/genetics
13.
J Clin Endocrinol Metab ; 106(4): 1011-1021, 2021 03 25.
Article in English | MEDLINE | ID: mdl-33394038

ABSTRACT

CONTEXT: Follicular thyroid carcinoma (FTC) is the second most common type of thyroid carcinoma and must be pathologically distinguished from benign follicular adenoma (FA). Additionally, the clinical assessment of thyroid tumors with uncertain malignant potential (TT-UMP) demands effective indicators. OBJECTIVE: We aimed to identify discriminating DNA methylation markers between FA and FTC. METHODS: DNA methylation patterns were investigated in 33 FTC and 33 FA samples using reduced representation bisulfite sequencing and methylation haplotype block-based analysis. A prediction model was constructed and validated in an independent cohort of 13 FTC and 13 FA samples. Moreover, 36 TT-UMP samples were assessed using this model. RESULTS: A total of 70 DNA methylation markers, approximately half of which were located within promoters, were identified to be significantly different between the FTC and FA samples. All the Gene Ontology terms enriched among the marker-associated genes were related to "DNA binding," implying that the inactivation of DNA binding played a role in FTC development. A random forest model with an area under the curve of 0.994 was constructed using those markers for discriminating FTC from FA in the validation cohort. When the TT-UMP samples were scored using this model, those with fewer driver mutations also exhibited lower scores. CONCLUSION: An FTC-predicting model was constructed using DNA methylation markers, which distinguished between FA and FTC tissues with a high degree of accuracy. This model can also be used to help determine the potential of malignancy in TT-UMP.


Subject(s)
Adenocarcinoma, Follicular/diagnosis , Adenoma/diagnosis , Biomarkers, Tumor/genetics , DNA Methylation , Thyroid Neoplasms/diagnosis , Adenocarcinoma, Follicular/genetics , Adenocarcinoma, Follicular/metabolism , Adenoma/genetics , Adenoma/metabolism , Adolescent , Adult , Aged , Biomarkers, Tumor/metabolism , Child , Diagnosis, Differential , Female , Haplotypes , Humans , Male , Middle Aged , Promoter Regions, Genetic/genetics , Sensitivity and Specificity , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism , Young Adult
14.
Aging (Albany NY) ; 13(6): 8817-8834, 2021 03 10.
Article in English | MEDLINE | ID: mdl-33714951

ABSTRACT

BACKGROUND: Early diagnosis of severe acute pancreatitis (SAP) is essential to minimize its mortality and improve prognosis. We aimed to develop an accurate and applicable machine learning predictive model based on routine clinical testing results for stratifying acute pancreatitis (AP) severity. RESULTS: We identified 11 markers predictive of AP severity and trained an AP stratification model called APSAVE, which classified AP cases within 24 hours at an average area under the curve (AUC) of 0.74 +/- 0.04. It was further validated in 568 validation cases, achieving an AUC of 0.73, which is similar to that of Ranson's criteria (AUC = 0.74) and higher than APACHE II and BISAP (AUC = 0.69 and 0.66, respectively). CONCLUSIONS: We developed and validated a venous blood marker-based AP severity stratification model with higher accuracy and broader applicability, which holds promises for reducing SAP mortality and improving its clinical outcomes. MATERIALS AND METHODS: Nine hundred and forty-five AP patients were enrolled into this study. Clinical venous blood tests covering 65 biomarkers were performed on AP patients within 24 hours of admission. An SAP prediction model was built with statistical learning to select biomarkers that are most predictive for AP severity.


Subject(s)
Biomarkers/blood , Early Diagnosis , Machine Learning , Pancreatitis/blood , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged
15.
Clin Epigenetics ; 13(1): 153, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34407868

ABSTRACT

BACKGROUND: Early-stage lung cancers radiologically manifested as ground-glass opacities (GGOs) have been increasingly identified, among which pure GGO (pGGO) has a good prognosis after local resection. However, the optimal surgical margin is still under debate. Precancerous lesions exist in tumor-adjacent tissues beyond the histological margin. However, potential precancerous epigenetic variation patterns beyond the histological margin of pGGO are yet to be discovered and described. RESULTS: A genome-wide high-resolution DNA methylation analysis was performed on samples collected from 15 pGGO at tumor core (TC), tumor edge (TE), para-tumor tissues at the 5 mm, 10 mm, 15 mm, 20 mm beyond the tumor, and peripheral normal (PN) tissue. TC and TE were tested with the same genetic alterations, which were also observed in histologically normal tissue at 5 mm in two patients with lower mutation allele frequency. According to the difference of methylation profiles between PN samples, 2284 methylation haplotype blocks (MHBs), 1657 differentially methylated CpG sites (DMCs), and 713 differentially methylated regions (DMRs) were identified using reduced representation bisulfite sequencing (RRBS). Two different patterns of methylation markers were observed: Steep (S) markers sharply changed at 5 mm beyond the histological margin, and Gradual (G) markers changed gradually from TC to PN. S markers composed 86.2% of the tumor-related methylation markers, and G markers composed the other 13.8%. S-marker-associated genes enriched in GO terms that were related to the hallmarks of cancer, and G-markers-associated genes enriched in pathways of stem cell pluripotency and transcriptional misregulation in cancer. Significant difference in DNA methylation score was observed between peripheral normal tissue and tumor-adjacent tissues 5 mm further from the histological margin (p < 0.001 in MHB markers). DNA methylation score at and beyond 10 mm from histological margin is not significantly different from peripheral normal tissues (p > 0.05 in all markers). CONCLUSIONS: According to the methylation pattern observed in our study, it was implied that methylation alterations were not significantly different between tissues at or beyond P10 and distal normal tissues. This finding explained for the excellent prognosis from radical resections with surgical margins of more than 15 mm. The inclusion of epigenetic characteristics into surgical margin analysis may yield a more sensitive and accurate assessment of remnant cancerous and precancerous cells in the surgical margins.


Subject(s)
Adenocarcinoma of Lung/diagnostic imaging , Adenocarcinoma of Lung/pathology , DNA Methylation/genetics , Histology/statistics & numerical data , Adenocarcinoma of Lung/genetics , Adult , Aged , Biomarkers, Tumor/analysis , Female , Humans , Male , Margins of Excision , Middle Aged
16.
Mol Ther Oncolytics ; 17: 61-69, 2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32322663

ABSTRACT

We aimed to examine the therapeutic potential of polysaccharide H-1-2, a bioactive component of Pseudostellaria heterophylla, against pancreatic cancer, as well as to demonstrate the underlying molecular mechanisms. Invasion and migration of pancreatic cells treated with H-1-2 were evaluated. A xenograft tumor mouse model was established to assess the effect of H-1-2 on tumor growth. Expression levels of hypoxic inducible factor-1α (HIF1α) and anterior gradient 2 (AGR2) were measured in pancreatic cells after H-1-2 treatment. Luciferase report and chromatin immunoprecipitation assays were conducted to investigate HIF1α regulation on AGR2. AGR2 expression was re-introduced into pancreatic cells to assess the role of AGR2 as a downstream effector of hypoxia after H-1-2 treatment. H-1-2 inhibited invasion and migration of pancreatic cancer cells, repressed xenograft pancreatic tumor growth, and increased survival of mice. H-1-2 repressed AGR2 expression in pancreatic cancer cells through the hypoxia response element (HRE) in its promoter region. Ectopic AGR2 expression partially negated the H-1-2 inhibitory effect on invasion and migration of pancreatic cells and on xenograft pancreatic tumors growth, and it also compromised the H-1-2 promotional effect on survival of mice. We conclude that H-1-2 suppresses pancreatic cancer by inhibiting hypoxia-induced AGR2 expression, supporting further investigation into its efficacy against pancreatic cancer in clinical settings.

18.
Nat Commun ; 11(1): 3475, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32694610

ABSTRACT

Early detection has the potential to reduce cancer mortality, but an effective screening test must demonstrate asymptomatic cancer detection years before conventional diagnosis in a longitudinal study. In the Taizhou Longitudinal Study (TZL), 123,115 healthy subjects provided plasma samples for long-term storage and were then monitored for cancer occurrence. Here we report the preliminary results of PanSeer, a noninvasive blood test based on circulating tumor DNA methylation, on TZL plasma samples from 605 asymptomatic individuals, 191 of whom were later diagnosed with stomach, esophageal, colorectal, lung or liver cancer within four years of blood draw. We also assay plasma samples from an additional 223 cancer patients, plus 200 primary tumor and normal tissues. We show that PanSeer detects five common types of cancer in 88% (95% CI: 80-93%) of post-diagnosis patients with a specificity of 96% (95% CI: 93-98%), We also demonstrate that PanSeer detects cancer in 95% (95% CI: 89-98%) of asymptomatic individuals who were later diagnosed, though future longitudinal studies are required to confirm this result. These results demonstrate that cancer can be non-invasively detected up to four years before current standard of care.


Subject(s)
Circulating Tumor DNA/blood , Early Detection of Cancer/methods , Neoplasms/blood , Neoplasms/diagnosis , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/blood , China , DNA Methylation , Epigenomics , Female , Genetic Markers , Healthy Volunteers , High-Throughput Nucleotide Sequencing , Humans , Longitudinal Studies , Male , Middle Aged , Reproducibility of Results , Sensitivity and Specificity , Young Adult
19.
Eukaryot Cell ; 7(10): 1649-60, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18658255

ABSTRACT

The histone H3 amino terminus, but not that of H4, is required to prevent the constitutively bound activator Cha4 from remodeling chromatin and activating transcription at the CHA1 gene in Saccharomyces cerevisiae. Here we show that neither the modifiable lysine residues nor any specific region of the H3 tail is required for repression of CHA1. We then screened for histone H3 mutations that cause derepression of the uninduced CHA1 promoter and identified six mutants, three of which are also temperature-sensitive mutants and four of which exhibit a sin(-) phenotype. Histone mutant levels were similar to that of wild-type H3, and the mutations did not cause gross alterations in nucleosome structure. One specific and strongly derepressing mutation, H3 A111G, was examined in depth and found to cause a constitutively active chromatin configuration at the uninduced CHA1 promoter as well as at the ADH2 promoter. Transcriptional derepression and altered chromatin structure of the CHA1 promoter depend on the activator Cha4. These results indicate that modest perturbations in distinct regions of the nucleosome can substantially affect the repressive function of chromatin, allowing activation in the absence of a normal inducing signal (at CHA1) or of Swi/Snf (resulting in a sin(-) phenotype).


Subject(s)
Chromatin/genetics , Down-Regulation , Histones/genetics , L-Serine Dehydratase/genetics , Mutation , Promoter Regions, Genetic , Saccharomyces cerevisiae/genetics , Threonine Dehydratase/genetics , Alcohol Dehydrogenase/genetics , Alcohol Dehydrogenase/metabolism , Chromatin/metabolism , Chromatin Assembly and Disassembly , Gene Expression Regulation, Fungal , Histones/metabolism , L-Serine Dehydratase/metabolism , Molecular Sequence Data , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Threonine Dehydratase/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription, Genetic
20.
Neurosci Bull ; 35(3): 369-377, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30255458

ABSTRACT

Immediate-early genes (IEGs) have long been used to visualize neural activations induced by sensory and behavioral stimuli. Recent advances in imaging techniques have made it possible to use endogenous IEG signals to visualize and discriminate neural ensembles activated by multiple stimuli, and to map whole-brain-scale neural activation at single-neuron resolution. In addition, a collection of IEG-dependent molecular tools has been developed that can be used to complement the labeling of endogenous IEG genes and, especially, to manipulate activated neural ensembles in order to reveal the circuits and mechanisms underlying different behaviors. Here, we review these techniques and tools in terms of their utility in studying functional neural circuits. In addition, we provide an experimental strategy to measure the signal-to-noise ratio of IEG-dependent molecular tools, for evaluating their suitability for investigating relevant circuits and behaviors.


Subject(s)
Brain/metabolism , Genes, Immediate-Early , Molecular Imaging/methods , Neurons/metabolism , Animals , Gene Expression Profiling/methods , Humans , Neural Pathways/metabolism , Signal-To-Noise Ratio
SELECTION OF CITATIONS
SEARCH DETAIL