Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Sci Adv ; 9(8): eade8222, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36812307

ABSTRACT

Myelodysplastic syndrome (MDS) is a clonal malignancy arising in hematopoietic stem cells (HSCs). The mechanisms of MDS initiation in HSCs are still poorly understood. The phosphatidylinositol 3-kinase (PI3K)/AKT pathway is frequently activated in acute myeloid leukemia, but in MDS, PI3K/AKT is often down-regulated. To determine whether PI3K down-regulation can perturb HSC function, we generated a triple knockout (TKO) mouse model with Pik3ca, Pik3cb, and Pik3cd deletion in hematopoietic cells. Unexpectedly, PI3K deficiency caused cytopenias, decreased survival, and multilineage dysplasia with chromosomal abnormalities, consistent with MDS initiation. TKO HSCs exhibit impaired autophagy, and pharmacologic autophagy induction improved HSC differentiation. Using intracellular LC3 and P62 flow cytometry and transmission electron microscopy, we also observed abnormal autophagic degradation in patient MDS HSCs. Therefore, we have uncovered an important protective role for PI3K in maintaining autophagic flux in HSCs to preserve the balance between self-renewal and differentiation and to prevent MDS initiation.


Subject(s)
Myelodysplastic Syndromes , Phosphatidylinositol 3-Kinases , Mice , Animals , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Hematopoietic Stem Cells , Myelodysplastic Syndromes/metabolism , Myelodysplastic Syndromes/pathology , Cell Differentiation , Mice, Knockout
2.
Leukemia ; 35(10): 2948-2963, 2021 10.
Article in English | MEDLINE | ID: mdl-34021250

ABSTRACT

Protein-coding and non-coding genes like miRNAs tightly control hematopoietic differentiation programs. Although miRNAs are frequently located within introns of protein-coding genes, the molecular interplay between intronic miRNAs and their host genes is unclear. By genomic integration site mapping of gamma-retroviral vectors in genetically corrected peripheral blood from gene therapy patients, we identified the EVL/MIR342 gene locus as a hotspot for therapeutic vector insertions indicating its accessibility and expression in human hematopoietic stem and progenitor cells. We therefore asked if and how EVL and its intronic miRNA-342 regulate hematopoiesis. Here we demonstrate that overexpression (OE) of Evl in murine primary Lin- Sca1+ cKit+ cells drives lymphopoiesis whereas miR-342 OE increases myeloid colony formation in vitro and in vivo, going along with a profound upregulation of canonical pathways essential for B-cell development or myelopoietic functions upon Evl or miR-342 OE, respectively. Strikingly, miR-342 counteracts its host gene by targeting lymphoid signaling pathways, resulting in reduced pre-B-cell output. Moreover, EVL overexpression is associated with lymphoid leukemia in patients. In summary, our data show that one common gene locus regulates distinct hematopoietic differentiation programs depending on the gene product expressed, and that the balance between both may determine hematopoietic cell fate decision.


Subject(s)
Cell Adhesion Molecules/metabolism , Cell Differentiation , Hematopoiesis , Hematopoietic Stem Cells/cytology , MicroRNAs/genetics , Animals , Cell Adhesion Molecules/genetics , Hematopoietic Stem Cells/metabolism , Humans , Introns , Mice
3.
JCI Insight ; 52019 05 23.
Article in English | MEDLINE | ID: mdl-31120863

ABSTRACT

Many cytokines and chemokines that are important for hematopoiesis activate the PI3K signaling pathway. Because this pathway is frequently mutated and activated in cancer, PI3K inhibitors have been developed for the treatment of several malignancies, and are now being tested in the clinic in combination with chemotherapy. However, the role of PI3K in adult hematopoietic stem cells (HSCs), particularly during hematopoietic stress, is still unclear. We previously showed that the individual PI3K catalytic isoforms P110α or P110ß have dispensable roles in HSC function, suggesting redundancy between PI3K isoforms in HSCs. We now demonstrate that simultaneous deletion of P110α and P110δ in double knockout (DKO) HSCs uncovers their redundant requirement in HSC cycling after 5-fluorouracil (5-FU) chemotherapy administration. In contrast, DKO HSCs are still able to exit quiescence in response to other stress stimuli, such as LPS. We found that DKO HSCs and progenitors have impaired sensing of inflammatory signals ex vivo, and that levels of IL1-ß and MIG are higher in the bone marrow after LPS than after 5-FU administration. Furthermore, exogenous in vivo administration of IL1-ß can induce cell cycle entry of DKO HSCs. Our findings have important clinical implications for the use of PI3K inhibitors in combination with chemotherapy.


Subject(s)
Hematopoiesis/physiology , Hematopoietic Stem Cells/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/drug effects , Animals , Antineoplastic Agents/pharmacology , Bone Marrow/drug effects , Cell Cycle , Class I Phosphatidylinositol 3-Kinases/genetics , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Female , Fluorouracil/pharmacology , Gene Expression Regulation, Enzymologic , Gene Knockout Techniques , Hematopoietic Stem Cells/drug effects , Lipopolysaccharides/adverse effects , Male , Mice, Knockout , Phosphatidylinositol 3-Kinases/genetics , Protein Isoforms
4.
Front Oncol ; 7: 265, 2017.
Article in English | MEDLINE | ID: mdl-29181334

ABSTRACT

Hematopoietic stem cells (HSCs) are a rare subset of bone marrow cells that usually exist in a quiescent state, only entering the cell cycle to replenish the blood compartment, thereby limiting the potential for errors in replication. Inflammatory signals that are released in response to environmental stressors, such as infection, trigger active cycling of HSCs. These inflammatory signals can also directly induce HSCs to release cytokines into the bone marrow environment, promoting myeloid differentiation. After stress myelopoiesis is triggered, HSCs require intracellular signaling programs to deactivate this response and return to steady state. Prolonged or excessive exposure to inflammatory cytokines, such as in prolonged infection or in chronic rheumatologic conditions, can lead to continued HSC cycling and eventual HSC loss. This promotes bone marrow failure, and can precipitate preleukemic states or leukemia through the acquisition of genetic and epigenetic changes in HSCs. This can occur through the initiation of clonal hematopoiesis, followed by the emergence preleukemic stem cells (pre-LSCs). In this review, we describe the roles of multiple inflammatory signaling pathways in the generation of pre-LSCs and in progression to myelodysplastic syndrome (MDS), myeloproliferative neoplasms, and acute myeloid leukemia (AML). In AML, activation of some inflammatory signaling pathways can promote the cycling and differentiation of LSCs, and this can be exploited therapeutically. We also discuss the therapeutic potential of modulating inflammatory signaling for the treatment of myeloid malignancies.

5.
Avicenna J Med Biotechnol ; 6(3): 169-77, 2014 Jul.
Article in English | MEDLINE | ID: mdl-25215181

ABSTRACT

BACKGROUND: Our preliminary data on the protein expression of SORT1 in ovarian carcinoma tissues showed that sortilin was overexpressed in ovarian carcinoma patients and cell lines, while non-malignant ovaries expressed comparably lower amount of this protein. In spite of diverse ligands and also different putative functions of sortilin (NTR3), the function of overexpressed sortilin in ovarian carcinoma cells is an intriguing subject of inquiry. The aim of this study was, therefore, to investigate the functional role of sortilin in survival of ovarian carcinoma cell line. METHODS: Expression of sortilin was knocked down using RNAi technology in the ovarian carcinoma cell line, Caov-4. Silencing of SORT1 expression was assessed using real-time qPCR and Western blot analyses. Apoptosis induction was evaluated using flow cytometry by considering annexin-V FITC binding. [(3)H]-thymidine incorporation assay was also used to evaluate cell proliferation capacity. RESULTS: Real-time qPCR and Western blot analyses showed that expression of sortilin was reduced by nearly 70-80% in the siRNA transfected cells. Knocking down of sortilin expression resulted in increased apoptosis (27.5±0.48%) in siRNA-treated ovarian carcinoma cell line. Sortilin silencing led to significant inhibition of proliferation (40.1%) in siRNA-transfected Caov-4 cells as compared to mock control-transfected counterpart (p < 0.05). CONCLUSION: As it was suspected from overexpression of sortilin in ovarian tumor cells, a cell survival role for sortilin can be deduced from these results. In conclusion, the potency of apoptosis induction via silencing of sortilin expression in tumor cells may introduce sortilin as a potential candidate for developing a novel targeted therapy in patients with ovarian carcinoma.

6.
PLoS One ; 8(2): e56308, 2013.
Article in English | MEDLINE | ID: mdl-23457546

ABSTRACT

Overexpression of ecotropic viral integration site 1 (EVI1) is associated with aggressive disease in acute myeloid leukemia (AML). Despite of its clinical importance, little is known about the mechanism through which EVI1 confers resistance to antileukemic drugs. Here, we show that a human myeloid cell line constitutively overexpressing EVI1 after infection with a retroviral vector (U937_EVI1) was partially resistant to etoposide and daunorubicin as compared to empty vector infected control cells (U937_vec). Similarly, inducible expression of EVI1 in HL-60 cells decreased their sensitivity to daunorubicin. Gene expression microarray analyses of U937_EVI1 and U937_vec cells cultured in the absence or presence of etoposide showed that 77 and 419 genes were regulated by EVI1 and etoposide, respectively. Notably, mRNA levels of 26 of these genes were altered by both stimuli, indicating that EVI1 regulated genes were strongly enriched among etoposide regulated genes and vice versa. One of the genes that were induced by both EVI1 and etoposide was CDKN1A/p21/WAF, which in addition to its function as a cell cycle regulator plays an important role in conferring chemotherapy resistance in various tumor types. Indeed, overexpression of CDKN1A in U937 cells mimicked the phenotype of EVI1 overexpression, similarly conferring partial resistance to antileukemic drugs.


Subject(s)
Apoptosis/drug effects , Cyclin-Dependent Kinase Inhibitor p21/metabolism , DNA-Binding Proteins/metabolism , Drug Resistance, Neoplasm , Leukemia, Myeloid, Acute/pathology , Myeloid Cells/drug effects , Transcription Factors/metabolism , Up-Regulation/drug effects , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , DNA-Binding Proteins/genetics , Daunorubicin/pharmacology , Etoposide/pharmacology , Female , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , MDS1 and EVI1 Complex Locus Protein , Mice , Myeloid Cells/metabolism , Myeloid Cells/pathology , Proto-Oncogenes/genetics , Transcription Factors/genetics
7.
Avicenna J Med Biotechnol ; 1(2): 125-31, 2009 Jul.
Article in English | MEDLINE | ID: mdl-23407681

ABSTRACT

Gene expression profiling of ovarian carcinoma tissues has shown an increase of four-fold expression of SORT1 gene. Sortilin 1 (NTR-3) is a 95-100 kDa protein normally expressed in heart, brain, placenta, skeletal muscle, spinal cord, thyroid, and testis. However, its expression has never been reported in normal ovary. Here, we report expression of sortilin 1 in ovarian carcinoma tissues both at gene and protein levels. Sortilin 1 was expressed in all ovarian carcinoma patients (n=15) as well as ovarian carcinoma cell lines (n=5) regardless of their phenotypic characteristics. Non-malignant ovaries (n=6) did not express sortilin 1. The molecular basis for this ectopic expression is not yet clear. Our results showed a major cell surface expression of sortilin 1 rather than ER-Golgi compartment where it is mainly expressed. This finding may introduce sortilin 1 as a novel tumor marker for diagnosis of ovarian carcinoma and may signify its therapeutic value in targeted therapy.

SELECTION OF CITATIONS
SEARCH DETAIL