Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Health Commun ; 28(sup1): 13-24, 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37390012

ABSTRACT

A major challenge in communicating health-related information is the involvement of multiple complex systems from the creation of the information to the sources and channels of dispersion to the information users themselves. To date, public health communications approaches have often not adequately accounted for the complexities of these systems to the degree necessary to have maximum impact. The virality of COVID-19 misinformation and disinformation has brought to light the need to consider these system complexities more extensively. Unaided, it is difficult for humans to see and fully understand complex systems. Luckily, there are a range of systems approaches and methods, such as systems mapping and systems modeling, that can help better elucidate complex systems. Using these methods to better characterize the various systems involved in communicating public health-related information can lead to the development of more tailored, precise, and proactive communications. Proceeding in an iterative manner to help design, implement, and adjust such communications strategies can increase impact and leave less opportunity for misinformation and disinformation to spread.


Subject(s)
COVID-19 , Health Communication , Humans , Public Health , COVID-19/epidemiology
2.
Infect Control Hosp Epidemiol ; 45(6): 754-761, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38356377

ABSTRACT

OBJECTIVE: Nursing home residents may be particularly vulnerable to coronavirus disease 2019 (COVID-19). Therefore, a question is when and how often nursing homes should test staff for COVID-19 and how this may change as severe acute respiratory coronavirus virus 2 (SARS-CoV-2) evolves. DESIGN: We developed an agent-based model representing a typical nursing home, COVID-19 spread, and its health and economic outcomes to determine the clinical and economic value of various screening and isolation strategies and how it may change under various circumstances. RESULTS: Under winter 2023-2024 SARS-CoV-2 omicron variant conditions, symptom-based antigen testing averted 4.5 COVID-19 cases compared to no testing, saving $191 in direct medical costs. Testing implementation costs far outweighed these savings, resulting in net costs of $990 from the Centers for Medicare & Medicaid Services perspective, $1,545 from the third-party payer perspective, and $57,155 from the societal perspective. Testing did not return sufficient positive health effects to make it cost-effective [$50,000 per quality-adjusted life-year (QALY) threshold], but it exceeded this threshold in ≥59% of simulation trials. Testing remained cost-ineffective when routinely testing staff and varying face mask compliance, vaccine efficacy, and booster coverage. However, all antigen testing strategies became cost-effective (≤$31,906 per QALY) or cost saving (saving ≤$18,372) when the severe outcome risk was ≥3 times higher than that of current omicron variants. CONCLUSIONS: SARS-CoV-2 testing costs outweighed benefits under winter 2023-2024 conditions; however, testing became cost-effective with increasingly severe clinical outcomes. Cost-effectiveness can change as the epidemic evolves because it depends on clinical severity and other intervention use. Thus, nursing home administrators and policy makers should monitor and evaluate viral virulence and other interventions over time.


Subject(s)
COVID-19 Testing , COVID-19 , Cost-Benefit Analysis , Nursing Homes , SARS-CoV-2 , Humans , Nursing Homes/economics , COVID-19/diagnosis , COVID-19/economics , COVID-19/prevention & control , COVID-19 Testing/economics , COVID-19 Testing/methods , United States
3.
JAMA Netw Open ; 7(8): e2429613, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39158906

ABSTRACT

Importance: Current guidance to furlough health care staff with mild COVID-19 illness may prevent the spread of COVID-19 but may worsen nursing home staffing shortages as well as health outcomes that are unrelated to COVID-19. Objective: To compare COVID-19-related with non-COVID-19-related harms associated with allowing staff who are mildly ill with COVID-19 to work while masked. Design, Setting, and Participants: This modeling study, conducted from November 2023 to June 2024, used an agent-based model representing a 100-bed nursing home and its residents, staff, and their interactions; care tasks; and resident and staff health outcomes to simulate the impact of different COVID-19 furlough policies over 1 postpandemic year. Exposures: Simulating increasing proportions of staff who are mildly ill and are allowed to work while wearing N95 respirators under various vaccination coverage, SARS-CoV-2 transmissibility and severity, and masking adherence. Main Outcomes and Measures: The main outcomes were staff and resident COVID-19 cases, staff furlough days, missed care tasks, nursing home resident hospitalizations (related and unrelated to COVID-19), deaths, and costs. Results: In the absence of SARS-CoV-2 infection in the study's 100-bed agent-based model, nursing home understaffing resulted in an annual mean (SD) 93.7 (0.7) missed care tasks daily (22.1%), 38.0 (7.6) resident hospitalizations (5.2%), 4.6 (2.2) deaths (0.6%), and 39.7 (19.8) quality-adjusted life years lost from non-COVID-19-related harms, costing $1 071 950 ($217 200) from the Centers for Medicare & Medicaid Services (CMS) perspective and $1 112 800 ($225 450) from the societal perspective. Under the SARS-CoV-2 Omicron variant conditions from 2023 to 2024, furloughing all staff who tested positive for SARS-CoV-2 was associated with a mean (SD) 326.5 (69.1) annual furlough days and 649.5 (95% CI, 593.4-705.6) additional missed care tasks, resulting in 4.3 (95% CI, 2.9-5.9) non-COVID-19-related resident hospitalizations and 0.7 (95% CI, 0.2-1.1) deaths, costing an additional $247 090 (95% CI, $203 160-$291 020) from the CMS perspective and $405 250 (95% CI, $358 550-$451 950) from the societal perspective. Allowing 75% of staff who were mildly ill to work while masked was associated with 5 additional staff and 5 additional resident COVID-19 cases without added COVID-19-related hospitalizations but mitigated staffing shortages, with 475.9 additional care tasks being performed annually, 3.5 fewer non-COVID-19-related hospitalizations, and 0.4 fewer non-COVID-19-related deaths. Allowing staff who were mildly ill to work ultimately saved an annual mean $85 470 (95% CI, $41 210-$129 730) from the CMS perspective and $134 450 (95% CI, $86 370-$182 540) from the societal perspective. These results were robust to increased vaccination coverage, increased nursing home transmission, increased importation of COVID-19 from the community, and failure to mask while working ill. Conclusion and Relevance: In this modeling study of staff COVID-19 furlough policies, allowing nursing home staff to work with mild COVID-19 illness was associated with fewer resident harms from staffing shortages and missed care tasks than harms from increased COVID-19 transmission, ultimately saving substantial direct medical and societal costs.


Subject(s)
COVID-19 , Nursing Homes , SARS-CoV-2 , Humans , COVID-19/epidemiology , Nursing Homes/statistics & numerical data , Masks/statistics & numerical data , Health Personnel , United States/epidemiology
4.
J Am Med Dir Assoc ; 25(4): 639-646.e5, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38432644

ABSTRACT

OBJECTIVES: To evaluate the epidemiologic, clinical, and economic value of an annual nursing home (NH) COVID-19 vaccine campaign and the impact of when vaccination starts. DESIGN: Agent-based model representing a typical NH. SETTING AND PARTICIPANTS: NH residents and staff. METHODS: We used the model representing an NH with 100 residents, its staff, their interactions, COVID-19 spread, and its health and economic outcomes to evaluate the epidemiologic, clinical, and economic value of varying schedules of annual COVID-19 vaccine campaigns. RESULTS: Across a range of scenarios with a 60% vaccine efficacy that wanes starting 4 months after protection onset, vaccination was cost saving or cost-effective when initiated in the late summer or early fall. Annual vaccination averted 102 to 105 COVID-19 cases when 30-day vaccination campaigns began between July and October (varying with vaccination start), decreasing to 97 and 85 cases when starting in November and December, respectively. Starting vaccination between July and December saved $3340 to $4363 and $64,375 to $77,548 from the Centers for Medicare & Medicaid Services and societal perspectives, respectively (varying with vaccination start). Vaccination's value did not change when varying the COVID-19 peak between December and February. The ideal vaccine campaign timing was not affected by reducing COVID-19 levels in the community, or varying transmission probability, preexisting immunity, or COVID-19 severity. However, if vaccine efficacy wanes more quickly (over 1 month), earlier vaccination in July resulted in more cases compared with vaccinating later in October. CONCLUSIONS AND IMPLICATIONS: Annual vaccination of NH staff and residents averted the most cases when initiated in the late summer through early fall, at least 2 months before the COVID-19 winter peak but remained cost saving or cost-effective when it starts in the same month as the peak. This supports tethering COVID vaccination to seasonal influenza campaigns (typically in September-October) for providing protection against SARS-CoV-2 winter surges in NHs.


Subject(s)
COVID-19 Vaccines , COVID-19 , Aged , Humans , United States/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Medicare , Vaccination , Nursing Homes
SELECTION OF CITATIONS
SEARCH DETAIL