Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Cell ; 187(14): 3726-3740.e43, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38861993

ABSTRACT

Many growth factors and cytokines signal by binding to the extracellular domains of their receptors and driving association and transphosphorylation of the receptor intracellular tyrosine kinase domains, initiating downstream signaling cascades. To enable systematic exploration of how receptor valency and geometry affect signaling outcomes, we designed cyclic homo-oligomers with up to 8 subunits using repeat protein building blocks that can be modularly extended. By incorporating a de novo-designed fibroblast growth factor receptor (FGFR)-binding module into these scaffolds, we generated a series of synthetic signaling ligands that exhibit potent valency- and geometry-dependent Ca2+ release and mitogen-activated protein kinase (MAPK) pathway activation. The high specificity of the designed agonists reveals distinct roles for two FGFR splice variants in driving arterial endothelium and perivascular cell fates during early vascular development. Our designed modular assemblies should be broadly useful for unraveling the complexities of signaling in key developmental transitions and for developing future therapeutic applications.


Subject(s)
Cell Differentiation , Fibroblast Growth Factors , Receptors, Fibroblast Growth Factor , Signal Transduction , Animals , Humans , Receptors, Fibroblast Growth Factor/metabolism , Fibroblast Growth Factors/metabolism , Mice , Ligands , Calcium/metabolism , MAP Kinase Signaling System
2.
Nature ; 616(7957): 581-589, 2023 04.
Article in English | MEDLINE | ID: mdl-37020023

ABSTRACT

General approaches for designing sequence-specific peptide-binding proteins would have wide utility in proteomics and synthetic biology. However, designing peptide-binding proteins is challenging, as most peptides do not have defined structures in isolation, and hydrogen bonds must be made to the buried polar groups in the peptide backbone1-3. Here, inspired by natural and re-engineered protein-peptide systems4-11, we set out to design proteins made out of repeating units that bind peptides with repeating sequences, with a one-to-one correspondence between the repeat units of the protein and those of the peptide. We use geometric hashing to identify protein backbones and peptide-docking arrangements that are compatible with bidentate hydrogen bonds between the side chains of the protein and the peptide backbone12. The remainder of the protein sequence is then optimized for folding and peptide binding. We design repeat proteins to bind to six different tripeptide-repeat sequences in polyproline II conformations. The proteins are hyperstable and bind to four to six tandem repeats of their tripeptide targets with nanomolar to picomolar affinities in vitro and in living cells. Crystal structures reveal repeating interactions between protein and peptide interactions as designed, including ladders of hydrogen bonds from protein side chains to peptide backbones. By redesigning the binding interfaces of individual repeat units, specificity can be achieved for non-repeating peptide sequences and for disordered regions of native proteins.


Subject(s)
Peptides , Protein Engineering , Proteins , Amino Acid Sequence , Models, Molecular , Peptides/chemistry , Peptides/metabolism , Proteins/chemistry , Proteins/metabolism , Protein Engineering/methods , Hydrogen Bonding , Protein Binding , Protein Folding , Protein Conformation
3.
Nat Chem Biol ; 20(8): 974-980, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38816644

ABSTRACT

In natural proteins, structured loops have central roles in molecular recognition, signal transduction and enzyme catalysis. However, because of the intrinsic flexibility and irregularity of loop regions, organizing multiple structured loops at protein functional sites has been very difficult to achieve by de novo protein design. Here we describe a solution to this problem that designs tandem repeat proteins with structured loops (9-14 residues) buttressed by extensive hydrogen bonding interactions. Experimental characterization shows that the designs are monodisperse, highly soluble, folded and thermally stable. Crystal structures are in close agreement with the design models, with the loops structured and buttressed as designed. We demonstrate the functionality afforded by loop buttressing by designing and characterizing binders for extended peptides in which the loops form one side of an extended binding pocket. The ability to design multiple structured loops should contribute generally to efforts to design new protein functions.


Subject(s)
Hydrogen Bonding , Models, Molecular , Proteins , Proteins/chemistry , Proteins/metabolism , Crystallography, X-Ray , Protein Conformation , Protein Folding , Protein Engineering/methods , Amino Acid Sequence , Binding Sites , Peptides/chemistry , Peptides/metabolism
4.
Nat Chem Biol ; 20(7): 906-915, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38831036

ABSTRACT

Natural photosystems couple light harvesting to charge separation using a 'special pair' of chlorophyll molecules that accepts excitation energy from the antenna and initiates an electron-transfer cascade. To investigate the photophysics of special pairs independently of the complexities of native photosynthetic proteins, and as a first step toward creating synthetic photosystems for new energy conversion technologies, we designed C2-symmetric proteins that hold two chlorophyll molecules in closely juxtaposed arrangements. X-ray crystallography confirmed that one designed protein binds two chlorophylls in the same orientation as native special pairs, whereas a second designed protein positions them in a previously unseen geometry. Spectroscopy revealed that the chlorophylls are excitonically coupled, and fluorescence lifetime imaging demonstrated energy transfer. The cryo-electron microscopy structure of a designed 24-chlorophyll octahedral nanocage with a special pair on each edge closely matched the design model. The results suggest that the de novo design of artificial photosynthetic systems is within reach of current computational methods.


Subject(s)
Chlorophyll , Chlorophyll/chemistry , Chlorophyll/metabolism , Crystallography, X-Ray , Models, Molecular , Photosynthesis , Energy Transfer , Cryoelectron Microscopy , Protein Conformation , Light-Harvesting Protein Complexes/chemistry , Light-Harvesting Protein Complexes/metabolism
5.
Proc Natl Acad Sci U S A ; 120(46): e2306129120, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37939083

ABSTRACT

Controlling the biodistribution of protein- and nanoparticle-based therapeutic formulations remains challenging. In vivo library selection is an effective method for identifying constructs that exhibit desired distribution behavior; library variants can be selected based on their ability to localize to the tissue or compartment of interest despite complex physiological challenges. Here, we describe further development of an in vivo library selection platform based on self-assembling protein nanoparticles encapsulating their own mRNA genomes (synthetic nucleocapsids or synNCs). We tested two distinct libraries: a low-diversity library composed of synNC surface mutations (45 variants) and a high-diversity library composed of synNCs displaying miniproteins with binder-like properties (6.2 million variants). While we did not identify any variants from the low-diversity surface library that yielded therapeutically relevant changes in biodistribution, the high-diversity miniprotein display library yielded variants that shifted accumulation toward lungs or muscles in just two rounds of in vivo selection. Our approach should contribute to achieving specific tissue homing patterns and identifying targeting ligands for diseases of interest.


Subject(s)
Peptide Library , Proteins , Tissue Distribution , Nucleocapsid , Mutation
6.
Proc Natl Acad Sci U S A ; 119(30): e2113400119, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35862457

ABSTRACT

Function follows form in biology, and the binding of small molecules requires proteins with pockets that match the shape of the ligand. For design of binding to symmetric ligands, protein homo-oligomers with matching symmetry are advantageous as each protein subunit can make identical interactions with the ligand. Here, we describe a general approach to designing hyperstable C2 symmetric proteins with pockets of diverse size and shape. We first designed repeat proteins that sample a continuum of curvatures but have low helical rise, then docked these into C2 symmetric homodimers to generate an extensive range of C2 symmetric cavities. We used this approach to design thousands of C2 symmetric homodimers, and characterized 101 of them experimentally. Of these, the geometry of 31 were confirmed by small angle X-ray scattering and 2 were shown by crystallographic analyses to be in close agreement with the computational design models. These scaffolds provide a rich set of starting points for binding a wide range of C2 symmetric compounds.


Subject(s)
Ligands , Protein Subunits , Models, Molecular , Protein Binding , Protein Subunits/chemistry
7.
Biochemistry ; 62(2): 358-368, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36627259

ABSTRACT

A challenge for design of protein-small-molecule recognition is that incorporation of cavities with size, shape, and composition suitable for specific recognition can considerably destabilize protein monomers. This challenge can be overcome through binding pockets formed at homo-oligomeric interfaces between folded monomers. Interfaces surrounding the central homo-oligomer symmetry axes necessarily have the same symmetry and so may not be well suited to binding asymmetric molecules. To enable general recognition of arbitrary asymmetric substrates and small molecules, we developed an approach to designing asymmetric interfaces at off-axis sites on homo-oligomers, analogous to those found in native homo-oligomeric proteins such as glutamine synthetase. We symmetrically dock curved helical repeat proteins such that they form pockets at the asymmetric interface of the oligomer with sizes ranging from several angstroms, appropriate for binding a single ion, to up to more than 20 Å across. Of the 133 proteins tested, 84 had soluble expression in E. coli, 47 had correct oligomeric states in solution, 35 had small-angle X-ray scattering (SAXS) data largely consistent with design models, and 8 had negative-stain electron microscopy (nsEM) 2D class averages showing the structures coming together as designed. Both an X-ray crystal structure and a cryogenic electron microscopy (cryoEM) structure are close to the computational design models. The nature of these proteins as homo-oligomers allows them to be readily built into higher-order structures such as nanocages, and the asymmetric pockets of these structures open rich possibilities for small-molecule binder design free from the constraints associated with monomer destabilization.


Subject(s)
Proteins , Escherichia coli/genetics , Glutamate-Ammonia Ligase , Proteins/chemistry , Scattering, Small Angle , X-Ray Diffraction
8.
Plant J ; 110(2): 562-571, 2022 04.
Article in English | MEDLINE | ID: mdl-35092704

ABSTRACT

Transcriptional regulators of the general stress response (GSR) reprogram the expression of selected genes to transduce informational signals into cellular events, ultimately manifested in a plant's ability to cope with environmental challenges. Identification of the core GSR regulatory proteins will uncover the principal modules and their mode of action in the establishment of adaptive responses. To define the GSR regulatory components, we employed a yeast-one-hybrid assay to identify the protein(s) binding to the previously established functional GSR motif, termed the rapid stress response element (RSRE). This led to the isolation of octadecanoid-responsive AP2/ERF-domain transcription factor 47 (ORA47), a methyl jasmonate inducible protein. Subsequently, ORA47 transcriptional activity was confirmed using the RSRE-driven luciferase (LUC) activity assay performed in the ORA47 loss- and gain-of-function lines introgressed into the 4xRSRE::Luc background. In addition, the prime contribution of CALMODULIN-BINDING TRANSCRIPTIONAL ACTIVATOR3 (CAMTA3) protein in the induction of RSRE was reaffirmed by genetic studies. Moreover, exogenous application of methyl jasmonate led to enhanced levels of ORA47 and CAMTA3 transcripts, as well as the induction of RSRE::LUC activity. Metabolic analyses illustrated the reciprocal functional inputs of ORA47 and CAMTA3 in increasing JA levels. Lastly, transient assays identified JASMONATE ZIM-domain1 (JAZ1) as a repressor of RSRE::LUC activity. Collectively, the present study provides fresh insight into the initial features of the mechanism that transduces informational signals into adaptive responses. This mechanism involves the functional interplay between the JA biosynthesis/signaling cascade and the transcriptional reprogramming that potentiates GSR. Furthermore, these findings offer a window into the role of intraorganellar communication in the establishment of adaptive responses.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cyclopentanes/metabolism , Gene Expression Regulation, Plant , Oxylipins/metabolism , Signal Transduction/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
9.
Nature ; 550(7674): 74-79, 2017 10 05.
Article in English | MEDLINE | ID: mdl-28953867

ABSTRACT

De novo protein design holds promise for creating small stable proteins with shapes customized to bind therapeutic targets. We describe a massively parallel approach for designing, manufacturing and screening mini-protein binders, integrating large-scale computational design, oligonucleotide synthesis, yeast display screening and next-generation sequencing. We designed and tested 22,660 mini-proteins of 37-43 residues that target influenza haemagglutinin and botulinum neurotoxin B, along with 6,286 control sequences to probe contributions to folding and binding, and identified 2,618 high-affinity binders. Comparison of the binding and non-binding design sets, which are two orders of magnitude larger than any previously investigated, enabled the evaluation and improvement of the computational model. Biophysical characterization of a subset of the binder designs showed that they are extremely stable and, unlike antibodies, do not lose activity after exposure to high temperatures. The designs elicit little or no immune response and provide potent prophylactic and therapeutic protection against influenza, even after extensive repeated dosing.


Subject(s)
Drug Design , Influenza, Human/drug therapy , Influenza, Human/prevention & control , Molecular Targeted Therapy/methods , Protein Engineering/methods , Proteins/chemistry , Proteins/therapeutic use , Botulinum Toxins/classification , Botulinum Toxins/metabolism , Computer Simulation , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Hot Temperature , Humans , Influenza, Human/metabolism , Molecular Dynamics Simulation , Protein Binding , Protein Stability , Proteins/immunology , Proteins/metabolism , Temperature
10.
J Exp Bot ; 67(5): 1557-66, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26733689

ABSTRACT

The exquisite harmony between hormones and their corresponding signaling pathways is central to prioritizing plant responses to simultaneous and/or successive environmental trepidations. The crosstalk between jasmonic acid (JA) and salicylic acid (SA) is an established effective mechanism that optimizes and tailors plant adaptive responses. However, the underlying regulatory modules of this crosstalk are largely unknown. Global transcriptomic analyses of mutant plants (ceh1) with elevated levels of the stress-induced plastidial retrograde signaling metabolite 2-C-methyl-D-erythritol cyclopyrophosphate (MEcPP) revealed robustly induced JA marker genes, expected to be suppressed by the presence of constitutively high SA levels in the mutant background. Analyses of a range of genotypes with varying SA and MEcPP levels established the selective role of MEcPP-mediated signal(s) in induction of JA-responsive genes in the presence of elevated SA. Metabolic profiling revealed the presence of high levels of the JA precursor 12-oxo-phytodienoic acid (OPDA), but near wild type levels of JA in the ceh1 mutant plants. Analyses of coronatine-insensitive 1 (coi1)/ceh1 double mutant plants confirmed that the MEcPP-mediated induction is JA receptor COI1 dependent, potentially through elevated OPDA. These findings identify MEcPP as a previously unrecognized central regulatory module that induces JA-responsive genes in the presence of high SA, thereby staging a multifaceted plant response within the environmental context.


Subject(s)
Arabidopsis/metabolism , Cyclopentanes/metabolism , Erythritol/analogs & derivatives , Oxylipins/metabolism , Plastids/metabolism , Salicylic Acid/metabolism , Signal Transduction/drug effects , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Erythritol/metabolism , Fatty Acids, Unsaturated/metabolism , Fatty Acids, Unsaturated/pharmacology , Gene Expression Regulation, Plant/drug effects , Genes, Plant , Models, Biological , Mutation/genetics , Plastids/drug effects
11.
Plant J ; 80(1): 82-92, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25039701

ABSTRACT

Plants cope with environmental challenges by rapidly triggering and synchronizing mechanisms governing stress-specific and general stress response (GSR) networks. The GSR acts rapidly and transiently in response to various stresses, but the underpinning mechanisms have remained elusive. To define GSR regulatory components we have exploited the Rapid Stress Response Element (RSRE), a previously established functional GSR motif, using Arabidopsis plants expressing a 4xRSRE::Luciferase (RSRE::LUC) reporter. Initially, we searched public microarray datasets and found an enrichment of RSRE in promoter sequences of stress genes. Next, we treated RSRE::LUC plants with wounding and a range of rapidly stress-inducible hormones and detected a robust LUC activity solely in response to wounding. Application of two Ca(2+) burst inducers, flagellin22 (flg22) and oligogalacturonic acid, activated RSRE strongly and systemically, while the Ca(2+) chelator ethylene glycol tetraacetic acid (EGTA) significantly reduced wound induction of RSRE::LUC. In line with the signaling function of Ca(2+) in transduction events leading to activation of RSRE, we examined the role of CALMODULIN-BINDING TRANSCRIPTIONAL ACTIVATORs (CAMTAs) in RSRE induction. Transient expression assays displayed CAMTA3 induction of RSRE and not that of the mutated element mRSRE. Treatment of selected camta mutant lines integrated into RSRE::LUC parent plant, with wounding, flg22, and freezing, established a differential function of these CAMTAs in potentiating the activity of RSRE. Wound response studies using camta double mutants revealed a cooperative function of CAMTAs2 and 4 with CAMTA 3 in the RSRE regulation. These studies provide insights into governing components of transduction events and reveal transcriptional modules that tune the expression of a key GSR motif.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Calcium-Binding Proteins/metabolism , Calmodulin/metabolism , Gene Expression Regulation, Plant , Trans-Activators/metabolism , Transcription Factors/metabolism , Amino Acid Motifs , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Calcium-Binding Proteins/genetics , Freezing , Genes, Reporter , Models, Biological , Mutagenesis, Insertional , Plant Growth Regulators/metabolism , Plant Leaves/genetics , Plant Leaves/physiology , Promoter Regions, Genetic/genetics , Response Elements , Signal Transduction , Stress, Physiological , Trans-Activators/genetics , Transcription Factors/genetics , Transcriptional Activation
12.
Plant Physiol ; 164(3): 1151-60, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24429214

ABSTRACT

Membranes are primary sites of perception of environmental stimuli. Polyunsaturated fatty acids are major structural constituents of membranes that also function as modulators of a multitude of signal transduction pathways evoked by environmental stimuli. Different stresses induce production of a distinct blend of oxygenated polyunsaturated fatty acids, "oxylipins." We employed three Arabidopsis (Arabidopsis thaliana) ecotypes to examine the oxylipin signature in response to specific stresses and determined that wounding and drought differentially alter oxylipin profiles, particularly the allene oxide synthase branch of the oxylipin pathway, responsible for production of jasmonic acid (JA) and its precursor 12-oxo-phytodienoic acid (12-OPDA). Specifically, wounding induced both 12-OPDA and JA levels, whereas drought induced only the precursor 12-OPDA. Levels of the classical stress phytohormone abscisic acid (ABA) were also mainly enhanced by drought and little by wounding. To explore the role of 12-OPDA in plant drought responses, we generated a range of transgenic lines and exploited the existing mutant plants that differ in their levels of stress-inducible 12-OPDA but display similar ABA levels. The plants producing higher 12-OPDA levels exhibited enhanced drought tolerance and reduced stomatal aperture. Furthermore, exogenously applied ABA and 12-OPDA, individually or combined, promote stomatal closure of ABA and allene oxide synthase biosynthetic mutants, albeit most effectively when combined. Using tomato (Solanum lycopersicum) and Brassica napus verified the potency of this combination in inducing stomatal closure in plants other than Arabidopsis. These data have identified drought as a stress signal that uncouples the conversion of 12-OPDA to JA and have revealed 12-OPDA as a drought-responsive regulator of stomatal closure functioning most effectively together with ABA.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis/physiology , Droughts , Oxylipins/metabolism , Plant Stomata/physiology , Adaptation, Physiological/drug effects , Arabidopsis/drug effects , Arabidopsis/enzymology , Brassica napus/drug effects , Brassica napus/physiology , Cyclopentanes/metabolism , Fatty Acids, Unsaturated/pharmacology , Lyases/metabolism , Solanum lycopersicum/drug effects , Solanum lycopersicum/physiology , Plant Stomata/drug effects , Plants, Genetically Modified , Stress, Physiological/drug effects , Subcellular Fractions/drug effects , Subcellular Fractions/metabolism
13.
bioRxiv ; 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39071356

ABSTRACT

A general approach to design proteins that bind tightly and specifically to intrinsically disordered regions (IDRs) of proteins and flexible peptides would have wide application in biological research, therapeutics, and diagnosis. However, the lack of defined structures and the high variability in sequence and conformational preferences has complicated such efforts. We sought to develop a method combining biophysical principles with deep learning to readily generate binders for any disordered sequence. Instead of assuming a fixed regular structure for the target, general recognition is achieved by threading the query sequence through diverse extended binding modes in hundreds of templates with varying pocket depths and spacings, followed by RFdiffusion refinement to optimize the binder-target fit. We tested the method by designing binders to 39 highly diverse unstructured targets. Experimental testing of ~36 designs per target yielded binders with affinities better than 100 nM in 34 cases, and in the pM range in four cases. The co-crystal structure of a designed binder in complex with dynorphin A is closely consistent with the design model. All by all binding experiments for 20 designs binding diverse targets show they are highly specific for the intended targets, with no crosstalk even for the closely related dynorphin A and dynorphin B. Our approach thus could provide a general solution to the intrinsically disordered protein and peptide recognition problem.

14.
bioRxiv ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38746206

ABSTRACT

While there has been progress in the de novo design of small globular miniproteins (50-65 residues) to bind to primarily concave regions of a target protein surface, computational design of minibinders to convex binding sites remains an outstanding challenge due to low level of overall shape complementarity. Here, we describe a general approach to generate computationally designed proteins which bind to convex target sites that employ geometrically matching concave scaffolds. We used this approach to design proteins binding to TGFßRII, CTLA-4 and PD-L1 which following experimental optimization have low nanomolar to picomolar affinities and potent biological activity. Co-crystal structures of the TGFßRII and CTLA-4 binders in complex with the receptors are in close agreement with the design models. Our approach provides a general route to generating very high affinity binders to convex protein target sites.

15.
Science ; 385(6706): 276-282, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39024436

ABSTRACT

We describe an approach for designing high-affinity small molecule-binding proteins poised for downstream sensing. We use deep learning-generated pseudocycles with repeating structural units surrounding central binding pockets with widely varying shapes that depend on the geometry and number of the repeat units. We dock small molecules of interest into the most shape complementary of these pseudocycles, design the interaction surfaces for high binding affinity, and experimentally screen to identify designs with the highest affinity. We obtain binders to four diverse molecules, including the polar and flexible methotrexate and thyroxine. Taking advantage of the modular repeat structure and central binding pockets, we construct chemically induced dimerization systems and low-noise nanopore sensors by splitting designs into domains that reassemble upon ligand addition.


Subject(s)
Deep Learning , Protein Binding , Proteins , Small Molecule Libraries , Binding Sites , Ligands , Methotrexate/chemistry , Molecular Docking Simulation , Nanopores , Protein Multimerization , Proteins/chemistry , Small Molecule Libraries/chemistry , Thyroxine/chemistry
16.
bioRxiv ; 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37662224

ABSTRACT

In natural proteins, structured loops play central roles in molecular recognition, signal transduction and enzyme catalysis. However, because of the intrinsic flexibility and irregularity of loop regions, organizing multiple structured loops at protein functional sites has been very difficult to achieve by de novo protein design. Here we describe a solution to this problem that generates structured loops buttressed by extensive hydrogen bonding interactions with two neighboring loops and with secondary structure elements. We use this approach to design tandem repeat proteins with buttressed loops ranging from 9 to 14 residues in length. Experimental characterization shows the designs are folded and monodisperse, highly soluble, and thermally stable. Crystal structures are in close agreement with the computational design models, with the loops structured and buttressed by their neighbors as designed. We demonstrate the functionality afforded by loop buttressing by designing and characterizing binders for extended peptides in which the loops form one side of an extended binding pocket. The ability to design multiple structured loops should contribute quite generally to efforts to design new protein functions.

17.
Nat Struct Mol Biol ; 30(11): 1755-1760, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37770718

ABSTRACT

In pseudocyclic proteins, such as TIM barrels, ß barrels, and some helical transmembrane channels, a single subunit is repeated in a cyclic pattern, giving rise to a central cavity that can serve as a pocket for ligand binding or enzymatic activity. Inspired by these proteins, we devised a deep-learning-based approach to broadly exploring the space of closed repeat proteins starting from only a specification of the repeat number and length. Biophysical data for 38 structurally diverse pseudocyclic designs produced in Escherichia coli are consistent with the design models, and the three crystal structures we were able to obtain are very close to the designed structures. Docking studies suggest the diversity of folds and central pockets provide effective starting points for designing small-molecule binders and enzymes.


Subject(s)
Hallucinations , Proteins , Humans , Proteins/chemistry
18.
Res Sq ; 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37131790

ABSTRACT

Natural photosystems couple light harvesting to charge separation using a "special pair" of chlorophyll molecules that accepts excitation energy from the antenna and initiates an electron-transfer cascade. To investigate the photophysics of special pairs independent of complexities of native photosynthetic proteins, and as a first step towards synthetic photosystems for new energy conversion technologies, we designed C2-symmetric proteins that precisely position chlorophyll dimers. X-ray crystallography shows that one designed protein binds two chlorophylls in a binding orientation matching native special pairs, while a second positions them in a previously unseen geometry. Spectroscopy reveals excitonic coupling, and fluorescence lifetime imaging demonstrates energy transfer. We designed special pair proteins to assemble into 24-chlorophyll octahedral nanocages; the design model and cryo-EM structure are nearly identical. The design accuracy and energy transfer function of these special pair proteins suggest that de novo design of artificial photosynthetic systems is within reach of current computational methods.

19.
bioRxiv ; 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38187589

ABSTRACT

A general method for designing proteins to bind and sense any small molecule of interest would be widely useful. Due to the small number of atoms to interact with, binding to small molecules with high affinity requires highly shape complementary pockets, and transducing binding events into signals is challenging. Here we describe an integrated deep learning and energy based approach for designing high shape complementarity binders to small molecules that are poised for downstream sensing applications. We employ deep learning generated psuedocycles with repeating structural units surrounding central pockets; depending on the geometry of the structural unit and repeat number, these pockets span wide ranges of sizes and shapes. For a small molecule target of interest, we extensively sample high shape complementarity pseudocycles to generate large numbers of customized potential binding pockets; the ligand binding poses and the interacting interfaces are then optimized for high affinity binding. We computationally design binders to four diverse molecules, including for the first time polar flexible molecules such as methotrexate and thyroxine, which are expressed at high levels and have nanomolar affinities straight out of the computer. Co-crystal structures are nearly identical to the design models. Taking advantage of the modular repeating structure of pseudocycles and central location of the binding pockets, we constructed low noise nanopore sensors and chemically induced dimerization systems by splitting the binders into domains which assemble into the original pseudocycle pocket upon target molecule addition.

20.
bioRxiv ; 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36993355

ABSTRACT

Growth factors and cytokines signal by binding to the extracellular domains of their receptors and drive association and transphosphorylation of the receptor intracellular tyrosine kinase domains, initiating downstream signaling cascades. To enable systematic exploration of how receptor valency and geometry affects signaling outcomes, we designed cyclic homo-oligomers with up to 8 subunits using repeat protein building blocks that can be modularly extended. By incorporating a de novo designed fibroblast growth-factor receptor (FGFR) binding module into these scaffolds, we generated a series of synthetic signaling ligands that exhibit potent valency- and geometry-dependent Ca2+ release and MAPK pathway activation. The high specificity of the designed agonists reveal distinct roles for two FGFR splice variants in driving endothelial and mesenchymal cell fates during early vascular development. The ability to incorporate receptor binding domains and repeat extensions in a modular fashion makes our designed scaffolds broadly useful for probing and manipulating cellular signaling pathways.

SELECTION OF CITATIONS
SEARCH DETAIL