Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Amino Acids ; 55(2): 253-261, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36474017

ABSTRACT

The activation of the mechanistic target of rapamycin complex 1 (mTORC1), a master regulator of protein synthesis, by anabolic stimuli (such as muscle contraction or essential amino acids) involves its translocation to the cell periphery. Leucine is generally considered the most anabolic of amino acids for its ability to independently modulate muscle protein synthesis. However, it is currently unknown if free leucine impacts region-specific mTORC1-mediated phosphorylation events and protein-protein interactions. In this clinical trial (NCT03952884; registered May 16, 2019), we used immunofluorescence methods to investigate the role of dietary leucine on the postprandial regulation of mTORC1 and ribosomal protein S6 (RPS6), an important downstream readout of mTORC1 activity. Eight young, healthy, recreationally active males (n = 8; 23 ± 3 yrs) ingested 2 g of leucine with vastus lateralis biopsies collected at baseline, 30, 60, and 180 min postprandial. Leucine promoted mTOR translocation to the periphery (~ 18-29%; p ≤ 0.012) and enhanced mTOR localization with the lysosome (~ 16%; both p = 0.049) at 30 and 60 min post-feeding. p-RPS6Ser240/244 staining intensity, a readout of mTORC1 activity, was significantly elevated at all postprandial timepoints in both the total fiber (~ 14-30%; p ≤ 0.032) and peripheral regions (~ 16-33%; p ≤ 0.014). Additionally, total and peripheral p-RPS6Ser240/244 staining intensity at 60 min was positively correlated (r = 0.74, p = 0.036; r = 0.80, p = 0.016, respectively) with rates of myofibrillar protein synthesis over 180 min. The ability of leucine to activate mTORC1 in peripheral regions favors an enhanced rate of MPS, as this is the intracellular space thought to be replete with the cellular machinery that facilitates this anabolic process.


Subject(s)
Muscle, Skeletal , TOR Serine-Threonine Kinases , Male , Humans , Leucine/metabolism , Phosphorylation , Ribosomal Protein S6/metabolism , TOR Serine-Threonine Kinases/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Muscle, Skeletal/metabolism , Eating
2.
Am J Physiol Cell Physiol ; 322(1): C94-C110, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34852208

ABSTRACT

Following anabolic stimuli (mechanical loading and/or amino acid provision), the mechanistic target of rapamycin complex 1 (mTORC1), a master regulator of protein synthesis, translocates toward the cell periphery. However, it is unknown if mTORC1-mediated phosphorylation events occur in these peripheral regions or before translocation (i.e., in central regions). We therefore aimed to determine the cellular location of a mTORC1-mediated phosphorylation event, RPS6Ser240/244, in human skeletal muscle following anabolic stimuli. Fourteen young, healthy males either ingested a protein-carbohydrate beverage (0.25 g/kg protein and 0.75 g/kg carbohydrate) alone [n = 7; 23 ± 5 yr; 76.8 ± 3.6 kg; and 13.6 ± 3.8% body fat (BF), FED] or following a whole body resistance exercise bout (n = 7; 22 ± 2 yr; 78.1 ± 3.6 kg; and 12.2 ± 4.9%BF, EXFED). Vastus lateralis muscle biopsies were obtained at rest (PRE) and 120 and 300 min following anabolic stimuli. RPS6Ser240/244 phosphorylation measured by immunofluorescent staining or immunoblot was positively correlated (r = 0.76, P < 0.001). Peripheral staining intensity of p-RPS6Ser240/244 increased above PRE in both FED and EXFED at 120 min (∼54% and ∼138%, respectively, P < 0.05) but was greater in EXFED at both poststimuli time points (P < 0.05). The peripheral-to-central ratio of p-RPS6240/244 staining displayed a similar pattern, even when corrected for total RPS6 distribution, suggesting RPS6 phosphorylation occurs to a greater extent in the periphery of fibers. Moreover, p-RPS6Ser240/244 intensity within paxillin-positive regions, a marker of focal adhesion complexes, was elevated at 120 min irrespective of stimulus (P = 0.006) before returning to PRE at 300 min. These data confirm that RPS6Ser240/244 phosphorylation occurs in the region of human muscle fibers to which mTOR translocates following anabolic stimuli and identifies focal adhesion complexes as a potential site of mTORC1 regulation in vivo.


Subject(s)
Dietary Carbohydrates/administration & dosage , Dietary Proteins/administration & dosage , Mechanistic Target of Rapamycin Complex 1/metabolism , Muscle Fibers, Skeletal/metabolism , Resistance Training/methods , Ribosomal Protein S6/metabolism , Adult , Humans , Male , Mechanistic Target of Rapamycin Complex 1/analysis , Muscle Fibers, Skeletal/chemistry , Muscle Fibers, Skeletal/drug effects , Muscle, Skeletal/chemistry , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Phosphorylation/drug effects , Phosphorylation/physiology , Ribosomal Protein S6/analysis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL