Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
J Environ Manage ; 361: 121231, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38810463

ABSTRACT

Insitu stabilization and phytoextraction are considered as two convenient and effective technologies for the remediation of toxic elements (TEs) in soils. However, the effectiveness of these two remediation technologies together on the bioavailability and phytoextraction of TEs in field trials has not been explored yet. Specifically, the remediation potential of fly ash (FA; as stabilizing agent) and ryegrass (as a TE accumulator) intercropped with a target crop for soil polluted with multiple TEs has not been investigated yet, particularly in long-term field trials. Therefore, in this study, a six-month combined remediation field experiment of FA stabilization and/or ryegrass intercropping (IR) was carried out on the farmland soils contaminated with As, Cd, Cr, Cu, Hg, Ni, Pb and Zn where Zanthoxylumbungeanum (ZB) trees as native crops were grown for years. The treatments include soil cultivated alone with ZB untreated- (control) and treated-with FA (FA), produced by burning lignite in Shaanxi Datong power plant, China, soil cultivated with ZB and ryegrass untreated- (IR) and treated-with FA (FA + IR). This was underpinned by a large-scale survey in Daiziying (China), which showed that the topsoils were polluted by Cd, Cu, Hg and Pb, and that Hg and Pb contents in the Zanthoxylumbungeanum fruits exceeded their allowable limits. The TEs contents in the studied FA were lower than their total element contents in the soil. The DTPA-extractable TEs contents of the remediation modes were as follows: FA < FA + IR < IR < control. Notably, TEs contents in the ZB fruits were lowest under the FA + IR treatment, which were decreased by 27.6% for As, 42.3% for Cd, 16.7% for Cr, 30.5% for Cu, 23.1% for Hg, 15.5% for Ni, 33.2% for Pb and 38.1% for Zn compared with the control treatment. Whereas the FA + IR treatment enhanced TEs contents in ryegrass shoots and roots, and the TEs contents in ryegrass shoots were below their regulatory limits for fodder crops. The findings confirmed that the combined remediation strategy, i.e., FA (with low content of TEs) stabilization effect and intercropping of ZB (target crop) and ryegrass (accumulating plant) could provide a prospective approach to produce target plants within safe TEs thresholds with greater economic benefits, while remediating soils polluted with multiple TEs and mitigating the potential ecological and human health risk. Those results are of great applicable concern.


Subject(s)
Coal Ash , Lolium , Soil Pollutants , Soil , Lolium/growth & development , Lolium/metabolism , Soil Pollutants/metabolism , Soil/chemistry , China , Environmental Restoration and Remediation/methods , Biodegradation, Environmental , Metals, Heavy
2.
J Environ Manage ; 305: 114427, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34998063

ABSTRACT

Soil organic carbon (SOC) is a key soil quality indicator, as it is a source and storage of plant nutrients and plays a vital role in soil fertility and productivity maintenance. Intensification of agriculture is known to cause SOC decline; however, much of the evidence stems from field-scale experimental trials. The primary aim of this study is to investigate how more than 20 years of agricultural land use intensification in Bangladesh has influenced SOC levels at landscape levels. This was achieved by revisiting in 2012 four sub-sites from the Brahmaputra and Ganges alluviums which were previously sampled (1989-92) by the Soil Resource Development Institute and collecting 190 new samples. These were located at different elevations and subjected to differing amounts of inundation. The SOC was determined using the same method, potassium dichromate wet oxidation, used in the 1989-92 campaign. A comparison of the SOC in the 2012 samples with their historic levels (1989-92) revealed that overall SOC declined significantly across both alluviums as well at their four sub-sites. Further analysis, however, showed that SOC has declined more at higher sites. The higher sites are inundated to a limited level, which makes them suitable for growing multiple crops. Among the land types considered here, the low land sites (because of their topographical position) remain inundated for a greater part of the year, allowing a maximum of only one crop of submerged rice. As a result of reduced biomass decomposition due to anaerobic conditions when inundated, and lower land use/cropping intensity, SOC accretion has occurred in the lower land sites. The SOC levels in South Asian countries are inherently low and agricultural land use intensification fuelled by growing food production demand is causing further SOC loss, which has the potential to jeopardise food security and increase the environmental impact of agriculture.


Subject(s)
Carbon , Soil , Agriculture , Bangladesh , Carbon/analysis , Carbon Sequestration
3.
Environ Res ; 196: 110963, 2021 05.
Article in English | MEDLINE | ID: mdl-33675802

ABSTRACT

The objectives of the current study are to investigate the concentration, biological risks, chemical speciation, and mobility of of heavy metals and also the determination of their distribution, physicochemical characteristics, and abundance of microplastics in coastal sediments and edible bivalves in the Persian Gulf, the coastal area of Hormozgan Province. Sampling points were selected considering the location of industrial, urban and Hara forest protected areas. In November 2017, a total of 18 sediment samples from coastal sediments (top 0-10 cm) and the most consumed bivalve species in the region were collected from two stations, Lengeh and Bandar Abbas Ports. The average concentration of heavy metals (except for Ni and Cd) in the sediments were lower than their average shale and the upper continental crust. Enrichment factors revealed significant enrichment of Ni, Mn, Cr, Cd and As. The fractionation of heavy metals using the Community Bureau of Reference (BCR) sequential extraction scheme indicated the high bioavailability of Zn, As, Mn, and Co. In general, the highest concentration of Mo, Cd, Pb, Zn, Cr, Cu, Mn, Hg, and Sb was detected in areas with frequent human activities including Shahid Rajaee Port, Shahid Bahonar Port, and Tavanir station. Shahid Rajaee and Shahid Bahonar Ports are the most important ports on the coast of Hormozgan province. The Risk Assessment Code calculated for the study elements indicates that As, Co, Zn, and Cu pose a moderate environmental risk a threat to the aquatic biota. Health risks of most heavy metals arising from bivalves consumption were safe, except for As which is associated with the high target cancer risk values. With reference to the type of microplastics found, they were mainly fibeours with lengths ranging between 100 and 250 µm in sediments and bivalves. Most of the microfibers found in the sediments were made of polyethylene terephthalate (PET) and polypropylene (PP), and the fibers found in the bivalves were made of PP.


Subject(s)
Bivalvia , Metals, Heavy , Water Pollutants, Chemical , Animals , Environmental Monitoring , Geologic Sediments , Humans , Indian Ocean , Metals, Heavy/analysis , Microplastics , Plastics , Risk Assessment , Water Pollutants, Chemical/analysis
4.
J Environ Manage ; 276: 111329, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32932069

ABSTRACT

Neonicotinoids are widely used to control insect pests in agriculture. Their presence in the environment can affect the health of non-target insects and aquatic animals. The behaviour of four neonicotinoids, namely imidacloprid, acetamiprid, thiacloprid and thiamethoxam, has been investigated in soils with contrasting characteristics to understand their migration in soil and ecological risk. Among the study neonicotinoids, thiamethoxam and thiacloprid were found to be the least and most sorbed neonicotinoids by all the soils, respectively (up to 186 time greater adsorption of thiacloprid), and their uptake was affected by the content of organic matter in the soil. Leaching studies in columns confirmed that thiamethoxam leached out of the soils readily, pointing out to a relatively high risk of ground water contamination with possible ecological impact when thiamethoxam is used in soils with low organic matter. In soil column studies, the soil with the lowest organic matter presents the greatest residue of neonicotinoids in the sub-surface (≤5 cm). In contrast the soil richer in organic matter presented most of the contamination deeper down in the column; a factor to be considered in the remediation from soil.


Subject(s)
Insecticides , Soil , Agriculture , Animals , Insecticides/analysis , Neonicotinoids , Nitro Compounds , Thiamethoxam
5.
Environ Geochem Health ; 42(11): 3659-3673, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32440917

ABSTRACT

Following earlier reports of water contamination and arsenic (As) toxicity symptoms in residents of Kurdistan Province, As was determined in rock, soil and plant samples to investigate its fate from rock to crops and its potential effects on human health. Total As content ranged from 4.9 to 10,000 mg/kg, 7.7-430 mg/kg and < 0.05-25,079 µg/kg (dry weight) in rock, soil and plant samples, respectively. The Qorveh-Bijar region data indicated that magmatic differentiation has enriched late magmatic fluids in As. High rare earth elements concentration, dissociation coefficient, and positive Eu anomaly in volcanic rocks, indicated the prevalence of intermediate to felsic composition. The highest As concentration was measured in travertine. In soil, As average level in Qorveh and Bijar was 48.5 and 107 mg/kg, respectively. Higher pollution index and geoaccumulation index (Igeo) were also calculated for Bijar County. The As concentration in crop samples was greater than the recommended maximum permissible concentration for foodstuff. Mann-Whitney U test revealed significant differences between As concentration in different plant species and no difference between plants in Bijar and Qorveh. Also, alfalfa displayed the highest biological accumulation coefficient among the investigated plants. The calculated chronic daily intake of As in Bijar County was higher than the recommended levels for wheat and barley grains. Moreover, the hazard quotient (HQ) and incremental lifetime cancer risk assessments revealed high non-cancer (HQ > 1 for both adults and children) and cancer (particularly for barley in Bijar) risks for inhabitants via consumption of As contaminated crops cultivated in the study area.


Subject(s)
Arsenic/analysis , Crops, Agricultural/chemistry , Dietary Exposure/analysis , Food Contamination/analysis , Soil Pollutants/analysis , Adult , Arsenic/pharmacokinetics , Arsenic/toxicity , Bioaccumulation , Carcinogens, Environmental/analysis , Carcinogens, Environmental/pharmacokinetics , Carcinogens, Environmental/toxicity , Child , Hordeum/chemistry , Humans , Iran , Medicago sativa , No-Observed-Adverse-Effect Level , Risk Assessment , Soil Pollutants/pharmacokinetics , Soil Pollutants/toxicity , Triticum/chemistry
6.
Waste Manag Res ; 34(7): 658-65, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27236164

ABSTRACT

Increasing concern about climate change is prompting organisations to mitigate their greenhouse gas emissions. Waste management activities also contribute to greenhouse gas emissions. In the waste management sector, there has been an increasing diversion of waste sent to landfill, with much emphasis on recycling and reuse to prevent emissions. This study evaluates the carbon footprint of the different processes involved in waste management systems, considering the entire waste management stream. Waste management data from the Royal Borough of Kingston upon Thames, London (UK), was used to estimate the carbon footprint for its (Royal Borough of Kingston upon Thames) current source segregation system. Second, modelled full and partial co-mingling scenarios were used to estimate carbon emissions from these proposed waste management approaches. The greenhouse gas emissions from the entire waste management system at Royal Borough of Kingston upon Thames were 12,347 t CO2e for the source-segregated scenario, and 11,907 t CO2e for the partial co-mingled model. These emissions amount to 203.26 kg CO2e t(-1) and 196.02 kg CO2e t(-1) municipal solid waste for source-segregated and partial co-mingled, respectively. The change from a source segregation fleet to a partial co-mingling fleet reduced the emissions, at least partly owing to a change in the number and type of vehicles.


Subject(s)
Greenhouse Effect , Waste Management
7.
J Environ Manage ; 145: 249-67, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25079682

ABSTRACT

Coal fly ash (CFA), a by-product of coal combustion has been regarded as a problematic solid waste, mainly due to its potentially toxic trace elements, PTEs (e.g. Cd, Cr, Ni, Pb) and organic compounds (e.g. PCBs, PAHs) content. However, CFA is a useful source of essential plant nutrients (e.g. Ca, Mg, K, P, S, B, Fe, Cu and Zn). Uncontrolled land disposal of CFA is likely to cause undesirable changes in soil conditions, including contamination with PTEs, PAHs and PCBs. Prudent CFA land application offers considerable opportunities, particularly for nutrient supplementation, pH correction and ameliorating soil physical conditions (soil compaction, water retention and drainage). Since CFA contains little or no N and organic carbon, and CFA-borne P is not readily plant available, a mixture of CFA and manure or sewage sludge (SS) is better suited than CFA alone. Additionally, land application of such a mixture can mitigate the mobility of SS-borne PTEs, which is known to increase following cessation of SS application. Research analysis further shows that application of alkaline CFA with or without other amendments can help remediate at least marginally metal contaminated soils by immobilisation of mobile metal forms. CFA land application with SS or other source of organic carbon, N and P can help effectively reclaim/restore mining-affected lands. Given the variability in the nature and composition of CFA (pH, macro- and micro-nutrients) and that of soil (pH, texture and fertility), the choice of CFA (acidic or alkaline and its application rate) needs to consider the properties and problems of the soil. CFA can also be used as a low cost sorbent for the removal of organic and inorganic contaminants from wastewater streams; the disposal of spent CFA however can pose further challenges. Problems in CFA use as a soil amendment occur when it results in undesirable change in soil pH, imbalance in nutrient supply, boron toxicity in plants, excess supply of sulphate and PTEs. These problems, however, are usually associated with excess or inappropriate CFA applications. The levels of PAHs and PCBs in CFA are generally low; their effects on soil biota, uptake by plants and soil persistence, however, need to be assessed. In spite of this, co-application of CFA with manure or SS to land enhances its effectiveness in soil improvements.


Subject(s)
Agriculture/methods , Coal Ash/analysis , Environmental Restoration and Remediation , Fertilizers/analysis , Solid Waste/analysis , Environmental Pollution/prevention & control , Soil/chemistry , Water Pollution, Chemical/prevention & control
8.
J Hazard Mater ; 477: 135239, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39053060

ABSTRACT

Bisphenol-A (BPA) is an emerging hazardous contaminant, which is ubiquitous in the environment and can cause endocrine disruptor and cancer risks. Therefore, biodegradation of BPA is an essential issue to mitigate the associated human health. In this work, a bacterial strain enables of degrading BPA, named BPA-LRH8 (identified as Xenophilus sp.), was newly isolated from activated sludge and embedded onto walnut shell biochar (WSBC) to form a bio-composite (BCM) for biodegradation of BPA in water. The Langmuir maximum adsorption capacity of BPA by WSBC was 21.7 mg g-1. The free bacteria of BPA-LRH8 showed high BPA degradation rate (∼100 %) at pH 5-11, while it was lower (<20 %) at pH 3. The BCM eliminated all BPA (∼100 %) at pH 3-11 and 25-45 °C when the BPA level was ≤ 25 mg L-1. The spectrometry investigations suggested two possible degradation routes of BPA by Xenophilus sp. In one route, BPA (C15H16O3) was oxidized to C15H16O3, and then broken into C9H12O3 through chain scission. In another route, BPA was likely hydroxylated, oxidized, and cleaved into C9H10O4P4, which was further metabolized into CO2 and H2O in the TCA cycle. This study concluded that the novel isolated bacteria (BPA-LRH8) embedded onto WSBC is a promising and new method for the effective removal of BPA and similar hazardous substances from contaminated water under high concentrations and wide range of pH and temperature.


Subject(s)
Benzhydryl Compounds , Biodegradation, Environmental , Charcoal , Phenols , Water Pollutants, Chemical , Phenols/metabolism , Charcoal/chemistry , Benzhydryl Compounds/metabolism , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration , Adsorption , Rhizobiaceae/metabolism
9.
Chemosphere ; 362: 142699, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38944354

ABSTRACT

Predicting the parameters that influence colloidal phosphorus (CP) release from soils under different land uses is critical for managing the impact on water quality. Traditional modeling approaches, such as linear regression, may fail to represent the intricate relationships that exist between soil qualities and environmental influences. Therefore, in this study, we investigated the major determinants of CP release from different land use/types such as farmland, desert, forest soils, and rivers. The study utilizes the structural equation model (SEM), multiple linear regression (MLR), and three machine learning (ML) models (Random Forest (RF), Support Vector Regression (SVR), and eXtreme Gradient Boosting (XGBoost)) to predict the release of CP from different soils by using soil iron (Fe), aluminum (Al), calcium (Ca), pH, total organic carbon (TOC) and precipitation as independent variables. Results show that colloidal-cations (Fe, Al, Ca) and colloidal-TOC strongly influence CP release, while bioclimatic variables (precipitation) and pH have weaker effects. XGBoost outperforms the other models with an R2 of 0.94 and RMSE of 0.09. SHapley Additive Explanations described the outcomes since XGBoost is accurate. The relative relevance ranking indicated that colloidal TOC had the highest ranking in predicting CP. This was supported by the analysis of partial dependence plots, which showed that an increase in colloidal TOC increased soil CP release. According to our research, the SHAP XGBoost model provides significant information that can help determine the variables that considerably influence CP contents as compared to RF, SVM, and MLR.


Subject(s)
Colloids , Machine Learning , Phosphorus , Soil , Phosphorus/analysis , Phosphorus/chemistry , Soil/chemistry , Colloids/chemistry , Soil Pollutants/analysis , Linear Models , Environmental Monitoring/methods , Iron/chemistry
10.
Sci Total Environ ; 942: 173567, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38848918

ABSTRACT

The increasing trend of using agricultural wastes follows the concept of "waste to wealth" and is closely related to the themes of sustainable development goals (SDGs). Carbon-neutral technologies for waste management have not been critically reviewed yet. This paper reviews the technological trend of agricultural waste utilization, including composting, thermal conversion, and anaerobic digestion. Specifically, the effects of exogenous additives on the contents, fractionation, and fate of phosphorus (P) and potentially toxic elements (PTEs) during the composting process have been comprehensively reviewed in this article. The composting process can transform biomass-P and additive-born P into plant available forms. PTEs can be passivated during the composting process. Biochar can accelerate the passivation of PTEs in the composting process through different physiochemical interactions such as surface adsorption, precipitation, and cation exchange reactions. The addition of exogenous calcium, magnesium and phosphate in the compost can reduce the mobility of PTEs such as copper, cadmium, and zinc. Based on critical analysis, this paper recommends an eco-innovative perspective for the improvement and practical application of composting technology for the utilization of agricultural biowastes to meet the circular economy approach and achieve the SDGs.


Subject(s)
Agriculture , Composting , Phosphorus , Phosphorus/analysis , Agriculture/methods , Composting/methods , Waste Management/methods
11.
Mar Pollut Bull ; 186: 114389, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36462421

ABSTRACT

Thirty sediment samples were collected from the Gohar Rood River (Iran) to assess the elemental concentrations, origins, and probable environmental risks in the riverine system. In this study, fifteen elements were analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Cr at all sites were exceeded the SEL (Severe Effect Level) value. Zn, Mn, Co, and Cr showed a moderate level of contamination, based on pollution index (PI), modified pollution index (MPI), and enrichment factor (EF). The modified hazard quotient (mHQ) represented low to extreme severity of pollution for some elements. The multi-linear regression of the absolute principal component score model indicated that largest contributors of Zn, Cu, Pb, Sb, and Mo to the riverine sediment were from agricultural runoff, domestic, and municipal sewage. Based on the modified BCR (the European Community Bureau of Reference) fractionation scheme, Mn, Co, and Zn indicated a medium to high risk to the local environment.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Wetlands , Rivers/chemistry , Environmental Monitoring , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Metals, Heavy/analysis , Risk Assessment
12.
Mar Pollut Bull ; 193: 115191, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37356126

ABSTRACT

This study investigated the concentration of PAHs in 19 water samples, 34 sediment samples and 22 fish samples of Anzali Wetland, located in north of Iran. The average concentration of ∑PAHs in the wetland sediment was 89.19 µg/kg (8.28-806.64) and 78.31 ng/L (5.14-253.37) in the wetland water. Also, the average concentration of ∑PAHS in the muscle of the investigated fish in the wetland was 23 µg/kg (56.1 to 7.6). The source apportionment of PAHs in water and sediment considering isomeric ratios and statistical methods reveals the predominance of petrogenic origin of the compounds in water and pyrogenic origin in sediment. Overall, the level of contamination in fish is relatively low to moderate, considering ∑PAHs. The findings present clear evidence of low to moderate level of contamination in the wetland, the PAHs contamination however could cross their ecological thresholds in future unless control measures are taken to protect the wetland.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , Wetlands , Iran , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Geologic Sediments , Polycyclic Aromatic Hydrocarbons/analysis , Fresh Water , Water , Risk Assessment
13.
Chemosphere ; 321: 138140, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36791821

ABSTRACT

We examined the occurrence and sources of 16 priority PAHs in the water and sediment samples of the Miankaleh Wetland (Coastal Biosphere Reserve), famous for harbouring huge flocks of migrating birds. The water and sediment samples collected from various locations were visualized and processed using a self-organizing map, positive matrix factorization and GIS. All the sediment samples, and >90% of the water samples, showed some degree of PAHs contamination. Higher PAH levels occur near the Chopoghi Channel, powerplants, sewage outfalls, and near fishing operations. Compared with previous study in this area, the PAHs concentration in the sediments of aquatic ecosystem of Miankaleh Wetland is increasing. The levels of PAH contamination seem too low to account for the mass deaths of migratory birds, and botulinus contamination seems the likely cause. Fugacity calculations show that the sediments act as a sink for PAHs. According to PMF and SOM analyses, three origins of PAHs were recognized: (i) fossil fuel and vehicular emissions with high-molecular weight PAHs (4-5 ring); (ii) municipal and industrial sewages characterized by low-molecular weight PAHs (2-3 ring) typical of petrogenic sources; and (iii) port activity characterized by prevalence of petrogenic influence and petroleum-related activities (combustion PAHs and low-molecular weight PAHs) consistent with port activity. This wetland needs serious attention because of continuous input of pollutants. The results and the methods used in this study may assist in improving coastal wetlands management.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Wetlands , Ecosystem , Iran , Geologic Sediments/analysis , Polycyclic Aromatic Hydrocarbons/analysis , China
14.
Mar Pollut Bull ; 182: 113966, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35969906

ABSTRACT

In this study selected marine species from north Persian Gulf ecosystems were collected to investigate the concentration of 15 trace elements (Al, As, Co, Cr, Cu, Fe, Li, Mo, Ni, Pb, Se, Sr, V, Zn and Hg) in muscle and liver tissues for the purpose of evaluating potential health risks for human consumers. The results indicated that Fe, Zn, Sr, Cu and As are the most abundant TEs in the tissues of the species. The concentration of Cu in P. semisulcatus and As in most investigated species pose the highest risk of exposure. The carcinogenic risk values indicate that As and Ni concentrations in the species are above the acceptable lifetime risk for adults and children in most of the species. The margin of exposure risk approach indicated that the risk of detrimental effects due to dietary Pb intake for age groups is low, except for consumers of T. tonggol.


Subject(s)
Metals, Heavy , Trace Elements , Water Pollutants, Chemical , Adult , Aquatic Organisms , Bioaccumulation , Child , Ecosystem , Environmental Monitoring , Humans , Lead , Metals, Heavy/analysis , Risk Assessment , Trace Elements/analysis , Water Pollutants, Chemical/analysis
15.
J Environ Monit ; 13(5): 1308-15, 2011 May.
Article in English | MEDLINE | ID: mdl-21468408

ABSTRACT

Predatory aquatic beetles are common colonizers of natural and managed aquatic environments. While as important components of the aquatic food webs they are prone to accumulate trace elements, they have been largely neglected from metal uptake studies. We aim to test the suitability of three dytiscid species, i.e.Hydroglyphus pusillus, Laccophilus minutus and Rhantus suturalis, as trace elements (Al, As, Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, Se and Zn) bioindicators. The work was carried out in a case area representing rice paddies and control sites (reservoirs) from an arid region known for its land degradation (Monegros, NE Spain). Categorical principal component analysis (CATPCA) was tested as a nonlinear approach to identify significant relationships between metals, species and habitat conditions so as to examine the ability of these species to reflect differences in metal uptake. Except Se and As, the average concentrations of all other elements in the beetles were higher in the rice fields than in the control habitats. The CATPCA determined that H. pusillus had high capacity to accumulate Fe, Ni and Mn regardless of the habitat type, and hence may not be capable of distinguishing habitat conditions with regards to these metals. On the other hand, L. minutus was found less sensitive for Se in non-managed habitats (i.e. reservoirs), while R. suturalis was good in accumulating Al, Mo and Pb in rice fields. The latter seems to be a promising bioindicator of metal enrichment in rice fields. We conclude that predatory aquatic beetles are good candidates for trace elements bioindication in impacted and non-impacted environments and can be used in environmental monitoring studies. CATPCA proved to be a reliable approach to unveil trends in metal accumulation in aquatic invertebrates according to their habitat status.


Subject(s)
Coleoptera/metabolism , Environmental Monitoring/methods , Trace Elements/metabolism , Water Pollutants, Chemical/metabolism , Animals , Ecosystem , Food Chain , Principal Component Analysis
16.
J Environ Manage ; 92(4): 1210-4, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21215509

ABSTRACT

Phosphorus (P) inputs to sewage treatment works (STW) come from a variety of sources and filtration of treated wastewater prior to discharge into receiving waters is a common practice. This means P in treated wastewaters may be present in forms that are potentially more bioavailable and mobile. We conducted a 2-year study to determine P species up and downstream of two STW outfalls into two tributaries of the River Thames. Downstream of the outfalls, P concentrations in both rivers were frequently greater by an order of magnitude for all species of P. A high proportion of total P (TP) in the downstream waters was determined as dissolved, which was largely comprised of soluble reactive P (SRP) - considered as the most bioavailable P species. Furthermore no significant difference in SRP was found in receiving waters passed through 0.45 and 0.10 µm filters. This means that P from STWs occurs in <0.1 µm fraction size, which will not readily settle to the channel bed and is more easily assimilated by biota. This distinguishes STW inputs from agricultural runoff where a high proportion of P occurs as particulate P which is both less bioavailable and more likely to settle to the channel bed. This implies that STWs derived P is likely to have a greater adverse impact on the receiving river than agricultural runoff.


Subject(s)
Phosphorus/analysis , Sewage/chemistry , Water Pollutants, Chemical/analysis , Water Pollution, Chemical/analysis , England , Waste Disposal, Fluid
17.
J Environ Monit ; 12(6): 1307-14, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20523930

ABSTRACT

Rivers Bourne and Hogsmill, urban tributaries of the Thames, were sampled up and downstream of sewage treatment works (STWs) wastewaters outflows. River water was analysed for total phosphorus (TP) and soluble reactive phosphorus (SRP) and, in conjunction with river flow data, this study aimed to assess the impact of treated wastewaters on P concentrations in rivers where wastewater volumes frequently exceed those of the underlying river and to consider whether these rivers are likely to achieve "good ecological status" under the Water Framework Directive (WFD). P concentrations downstream of the STW discharge points were generally an order of magnitude greater than upstream, the flow weighted mean concentration in the River Bourne increased from 0.078 mg SRP l(-1) to 0.45 mg SRP l(-1) downstream of the input source. In the Hogsmill, the flow weighted mean concentration rose from 0.19 mg SRP l(-1) to 1.78 mg SRP l(-1) downstream of the input source prior to the introduction of P removal at the STW. Once P removal commenced, flow weighted mean concentrations downstream of the STW reduced to 0.56 mg SRP l(-1). Headwaters in the River Bourne, upstream of the STW outflow showed evidence of irregular, minor, diffuse inputs but overall mean figures indicate that the proposed UK Technical Advisory Group (UK TAG) for the WFD limit of 0.12 mg SRP l(-1) would be met. Headwaters in the Hogsmill are subject to small, continuous discharges of sewage effluent, sufficient to raise SRP levels above the UK TAG limit. Downstream, neither river meets the UKTAG recommendations in terms of P, despite the use of P-stripping processes at both STWs, an indication that current discharge consents for P concentrations in wastewaters are too high.


Subject(s)
Environmental Monitoring , Phosphorus/analysis , Rivers/chemistry , Sewage/chemistry , Waste Disposal, Fluid , Water Pollutants, Chemical/analysis , Agrochemicals/analysis , Cities , England , Water Movements
18.
J Environ Monit ; 11(11): 1973-81, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19890554

ABSTRACT

Recently arsenic contamination and its environmental and human health problems have been raising concerns worldwide. The occurrence of natural high levels of arsenic contamination has generally been reported for low altitude environments. Here we report a study conducted to assess the extent of arsenic mobilisation/transportation from previously identified arsenic source areas in a high altitude cirque of the Pyrenees as well as the potential contribution of As by snow. The concentration of arsenic in sediments of several tributaries was enriched up to about ten folds due to mobilisation of arsenic from the source areas within the catchment. The highest arsenic enrichments were found in an area dominated by quartzite and slate formation in the southern side of the basin, and it generally diminished towards the major lake downstream, possible due to mixing with sediments from non-source areas. At these sites arsenic exceeded the hazard quotient (HQ) limits for the protection of aquatic life. The potential hazard of the As-enriched sediments may be further enhanced outside the catchment as samples collected downstream the cirque have also shown arsenic concentration exceeding HQ unity. The arsenic concentrations in the water collected at a number of sites exceeded its guide value for the protection of aquatic life. The potential As contribution by snow in the area was low and was largely of lithospheric origin. The PCA analysis showed strong association of arsenic in sediments with the sediment mineralogical composition (Fe2O3, TiO2 and Mn). Arsenic in water was positively correlated with its concentration in the sediments and could potentially increase if the environmental/climate conditions change.


Subject(s)
Altitude , Arsenic/analysis , Environmental Pollution/analysis , Geologic Sediments/chemistry , Snow/chemistry , Environmental Monitoring , Fresh Water/chemistry , Spain , Water Pollutants, Chemical/analysis
19.
Sci Total Environ ; 675: 623-631, 2019 Jul 20.
Article in English | MEDLINE | ID: mdl-31035201

ABSTRACT

The removal of phosphorus (P) from sewage effluents is necessary to control eutrophication in receiving waters. Biochar has been proposed and is investigated for the capture and reuse of P, however the forces driving and limiting P adsorption are still largely unclear. To identify the forces governing P uptake by biochar, biochars with markedly different physicochemical characteristics derived from a variety of biomass (oilseed rape straw, wheat straw, miscanthus straw, rice husk, soft wood and sewage sludge residue), pyrolysed at various temperatures, were investigated. The biochar samples were characterised in terms of pH, electrical conductivity, total acidity, carbon chemistry, metal composition, surface area, and porosity, and the uptake and release of P was compared to the biochar properties using multivariate analysis. Uptake of P by the biochars as such was low (< 0.71 mg P/g biochar with feed solutions of 50 mg P/l) and, among the variables studied, the biochars' Ca and Mg content was key in P removal and found to be pH dependant. Enhancement of biochar surface area and porosity was carried out by activation with CO2 at 800 °C and the uptake significantly improved (p < 0.05) (i.e. an increased surface area from <20 m2/g up to 781 m2/g gave a limited improvement in P removal to <1.2 mg P/g biochar at feed level of 50 mg P/l). These results confirm that the potential to use these unmodified biochars derived from a variety of biomass for P sorption is low, but that the material provides properties that may be modified or enhanced to increase sorption capacity. This study indicates that biochar/biochar feedstock with greater content of Ca and Mg will be more advantageous for P capture.


Subject(s)
Charcoal/analysis , Phosphorus/analysis , Waste Disposal, Fluid/methods , Water Pollutants/analysis , Biomass , Hot Temperature , Oryza/chemistry , Phosphorus/chemistry , Soil/chemistry , Temperature , Water Pollutants/chemistry , Wood/chemistry
20.
Chemosphere ; 232: 439-452, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31158639

ABSTRACT

This study investigated the role of an allochthonous Gram-positive wastewater bacterium (Bacillus sp. KUJM2) selected through rigorous screening, for the removal of potentially toxic elements (PTEs; As, Cd, Cu, Ni) and promotion of plant growth under PTE-stress conditions. The dried biomass of the bacterial strain removed PTEs (5 mg L-1) from water by 90.17-94.75 and 60.4-81.41%, whereas live cells removed 87.15-91.69 and 57.5-78.8%, respectively, under single-PTE and co-contaminated conditions. When subjected to a single PTE, the bacterial production of indole-3-acetic acid (IAA) reached the maxima with Cu (67.66%) and Ni (64.33%), but Cd showed an inhibitory effect beyond 5 mg L-1 level. The multiple-PTE treatment induced IAA production only up to 5 mg L-1 beyond which inhibition ensued. Enhanced germination rate, germination index and seed production of lentil plant (Lens culinaris) under the bacterial inoculation indicated the plant growth promotion potential of the microbial strain. Lentil plants, as a result of bacterial inoculation, responded with higher shoot length (7.1-27.61%), shoot dry weight (18.22-36.3%) and seed production (19.23-29.17%) under PTE-stress conditions. The PTE uptake in lentil shoots decreased by 67.02-79.85% and 65.94-78.08%, respectively, under single- and multiple-PTE contaminated conditions. Similarly, PTE uptake was reduced in seeds up to 72.82-86.62% and 68.68-85.94%, respectively. The bacteria-mediated inhibition of PTE translocation in lentil plant was confirmed from the translocation factor of the respective PTEs. Thus, the selected bacterium (Bacillus sp. KUJM2) offered considerable potential as a PTE remediating agent, plant growth promoter and regulator of PTE translocation curtailing environmental and human health risks.


Subject(s)
Bacillus/growth & development , Lens Plant/growth & development , Soil Pollutants/analysis , Wastewater/microbiology , Bacillus/metabolism , Biodegradation, Environmental , Germination/drug effects , Indoleacetic Acids/metabolism , Lens Plant/microbiology , Plant Roots/growth & development , Plant Roots/microbiology , Soil Pollutants/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL