Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters

Country/Region as subject
Publication year range
1.
New Phytol ; 243(1): 451-465, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38764373

ABSTRACT

The tree of life is riddled with reticulate evolutionary histories, and some clades, such as the eastern standing Phlox, appear to be hotspots of hybridization. In this group, there are two cases of reinforcement and nine hypothesized hybrid species. Given their historical importance in our understanding of plant speciation, the relationships between these taxa and the role of hybridization in their diversification require genomic validation. Using phylogenomic analyses, we resolve the evolutionary relationships of the eastern standing Phlox and evaluate hypotheses about whether and how hybridization and gene flow played a role in their diversification. Our results provide novel resolution of the phylogenetic relationships in this group, including paraphyly across some taxa. We identify gene flow during one case of reinforcement and find genomic support for a hybrid lineage underlying one of the five hypothesized homoploid hybrid speciation events. Additionally, we estimate the ancestries of four allotetraploid hybrid species. Our results are consistent with hybridization contributing to diverse evolutionary outcomes within this group; although, not as extensively as previously hypothesized. This study demonstrates the importance of phylogenomics in evaluating hypothesized evolutionary histories of non-model systems and adds to the growing support of interspecific genetic exchange in the generation of biodiversity.


Subject(s)
Genetic Speciation , Hybridization, Genetic , Phylogeny , Gene Flow , Genome, Plant , Genomics , Helianthus/genetics , Biological Evolution
2.
Ann Bot ; 131(1): 171-184, 2023 02 07.
Article in English | MEDLINE | ID: mdl-35390125

ABSTRACT

BACKGROUND AND AIMS: Hybridization is a common and important force in plant evolution. One of its outcomes is introgression - the transfer of small genomic regions from one taxon to another by hybridization and repeated backcrossing. This process is believed to be common in glacial refugia, where range expansions and contractions can lead to cycles of sympatry and isolation, creating conditions for extensive hybridization and introgression. Polyploidization is another genome-wide process with a major influence on plant evolution. Both hybridization and polyploidization can have complex effects on plant evolution. However, these effects are often difficult to understand in recently evolved species complexes. METHODS: We combined flow cytometry, analyses of transcriptomic sequences and pollen tube growth assays to investigate the consequences of polyploidization, hybridization and introgression on the recent evolution of several Erysimum (Brassicaceae) species from the South of the Iberian Peninsula, a well-known glacial refugium. This species complex differentiated in the last 2 million years, and its evolution has been hypothesized to be determined mainly by polyploidization, interspecific hybridization and introgression. KEY RESULTS: Our results support a scenario of widespread hybridization involving both extant and 'ghost' taxa. Several taxa studied here, most notably those with purple corollas, are polyploids, probably of allopolyploid origin. Moreover, hybridization in this group might be an ongoing phenomenon, as pre-zygotic barriers appeared weak in many cases. CONCLUSIONS: The evolution of Erysimum spp. has been determined by hybridization to a large extent. Species with purple (polyploids) and yellow flowers (mostly diploid) exhibit a strong signature of introgression in their genomes, indicating that hybridization occurred regardless of colour and across ploidy levels. Although the adaptive value of such genomic exchanges remains unclear, our results demonstrate the significance of hybridization for plant diversification, which should be taken into account when studying plant evolution.


Subject(s)
Brassicaceae , Erysimum , Hybridization, Genetic , Polyploidy , Europe , Phylogeny
3.
Am J Bot ; 110(5): e16172, 2023 05.
Article in English | MEDLINE | ID: mdl-37087740

ABSTRACT

PREMISE: A central goal of pollination biology is to connect plants with the identity of their pollinator(s). While predictions based on floral syndrome traits are extremely useful, direct observation can reveal further details of a species' pollination biology. The wildflower Phlox drummondii has a floral syndrome consistent with pollination by Lepidoptera. We tested this prediction using empirical data. METHODS: We observed each step of pollination in P. drummondii. First, we observed 55.5 h of floral visitation across the species range. We used temporal pollinator exclusion to determine the contribution of diurnal and nocturnal pollination to reproductive output. We then quantified P. drummondii pollen transfer by the dominant floral visitor, Battus philenor. Finally, we tested the effect of B. philenor visitation on P. drummondii reproduction by quantifying fruit set following single pollinator visits. RESULTS: Battus philenor is the primary pollinator of P. drummondii. Pollination is largely diurnal, and we observed a variety of lepidopteran visitors during the diurnal period. However, B. philenor was the most frequent visitor, representing 88.5% of all observed visits. Our results show that B. philenor is an extremely common visitor and also an effective pollinator by demonstrating that individuals transfer pollen between flowers and that a single visit can elicit fruit set. CONCLUSIONS: Our data are consistent with the prediction of lepidopteran pollination and further reveal a single butterfly species, B. philenor, as the primary pollinator. Our study demonstrates the importance of empirical pollinator observations, adds to our understanding of pollination mechanics, and offers a specific case study of butterfly pollination.


Subject(s)
Butterflies , Pollination , Animals , Reproduction , Plants , Pollen
4.
New Phytol ; 235(6): 2211-2222, 2022 09.
Article in English | MEDLINE | ID: mdl-35524463

ABSTRACT

Trade-offs among carbon sinks constrain how trees physiologically, ecologically, and evolutionarily respond to their environments. These trade-offs typically fall along a productive growth to conservative, bet-hedging continuum. How nonstructural carbohydrates (NSCs) stored in living tree cells (known as carbon stores) fit in this trade-off framework is not well understood. We examined relationships between growth and storage using both within species genetic variation from a common garden, and across species phenotypic variation from a global database. We demonstrate that storage is actively accumulated, as part of a conservative, bet-hedging life history strategy. Storage accumulates at the expense of growth both within and across species. Within the species Populus trichocarpa, genetic trade-offs show that for each additional unit of wood area growth (in cm2 yr-1 ) that genotypes invest in, they lose 1.2 to 1.7 units (mg g-1 NSC) of storage. Across species, for each additional unit of area growth (in cm2 yr-1 ), trees, on average, reduce their storage by 9.5% in stems and 10.4% in roots. Our findings impact our understanding of basic plant biology, fit storage into a widely used growth-survival trade-off spectrum describing life history strategy, and challenges the assumptions of passive storage made in ecosystem models today.


Subject(s)
Ecosystem , Life History Traits , Carbohydrates , Carbon , Plants , Trees/physiology
5.
Plant Cell Environ ; 44(8): 2494-2505, 2021 08.
Article in English | MEDLINE | ID: mdl-33244757

ABSTRACT

Trees' total amount of non-structural carbohydrate (NSC) stores and the proportion of these stores residing as insoluble starch are vital traits for individuals living in variable environments. However, our understanding of how stores vary in response to environmental stress is poorly understood as the genetic component of storage is rarely accounted for in studies. Here, we quantified variation in NSC traits in branch samples taken from over 600 clonally transplanted black cottonwood (Populus trichocarpa) trees grown in two common gardens. We found heritable variation in both total NSC stores and the proportion of stores in starch (H2TNC  = 0.19, H2PropStarch  = 0.31), indicating a substantial genetic component of variation. In addition, we found high amounts of plasticity in both traits in response to cold temperatures and significant genotype-by-environment (GxE) interactions in the total amount of NSC stored (54% of P is GxE). This finding of high GxE indicates extensive variation across trees in their response to environment, which may explain why previous studies of carbohydrate stores' responses to stress have failed to converge on a consistent pattern. Overall, we found high amounts of environmental and genetic variation in NSC storage concentrations, which may bolster species against future climate change.


Subject(s)
Adaptation, Biological , Carbohydrate Metabolism , Populus/metabolism , Trees/metabolism , Climate , Gardens , Gene-Environment Interaction , Genotype , Oregon , Phenotype , Populus/chemistry , Populus/physiology , Trees/chemistry , Trees/physiology
6.
Am J Bot ; 107(2): 209-218, 2020 02.
Article in English | MEDLINE | ID: mdl-32080832

ABSTRACT

PREMISE: Understanding how environmental stress affects the strength of mutualisms is critically important given observed and projected environmental changes. In particular, the frequency and duration of drought have been increasing worldwide. We investigated how water availability affects plant traits that mediate a pollination mutualism. METHODS: For butterfly-pollinated Phlox drummondii, we determined how moisture availability affects flower size, nectar volume, and nectar sugar amount. Furthermore, we explored the role that local adaptation may play in responses to moisture availability by including plants collected from regions that differ in aridity. Finally, we determined whether responses of plant populations to selection may differ under drought by calculating heritability of traits under control and dry conditions. RESULTS: Flower size was generally smaller in dry plants than in control plants. Early in the treatment period, nectar volume and sugar were higher in dry plants than in control plants for plants from both arid and wetter regions. With prolonged dry treatment, nectar volume and sugar remained higher only in plants from the arid region. Heritability of floral traits was lower for water-limited plants than for control plants. CONCLUSIONS: Plant investment into pollination mutualisms under environmental stress may depend on the extent to which populations are already locally adapted to such conditions, suggesting that mutualism may remain strong, at least in arid regions. However, decreases in heritability under water-limitation suggest that responses to selection imposed by pollinators may be low, even if drought-adapted plants maintain production of rewards to pollinators.


Subject(s)
Pollination , Water , Droughts , Flowers , Plant Nectar
7.
Mol Biol Evol ; 35(4): 807-822, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29253197

ABSTRACT

Immense floral trait variation has likely arisen as an adaptation to attract pollinators. Different pollinator syndromes-suites of floral traits that attract specific pollinator functional groups-are repeatedly observed across closely related taxa or divergent populations. The observation of these trait syndromes suggests that pollinators use floral cues to signal the underlying nectar reward, and that complex trait combinations may persist and evolve through genetic correlations. Here, we explore pollinator preferences and the genetic architecture of floral divergence using an extensive genetic mapping study in the hybrid zone of two Ipomopsis aggregata subspecies that exhibit a hummingbird and a hawkmoth pollinator syndrome. We found that natural selection acts on several floral traits, and that hummingbirds and hawkmoths exhibited flower color preferences as predicted by their respective pollinator syndromes. Our quantitative trait loci (QTL) analyses revealed 46 loci affecting floral features, many of which colocalize across the genome. Two of these QTL have large effects explaining >15% of the phenotypic variance. The strongest QTL was associated with flower color and localized to a SNP in the anthocyanin biosynthesis pathway gene, dihydroflavonol-4-reductase (DFR). Further analysis revealed strong associations between DFR SNP variants, gene expression, and flower color across populations from the hybrid zone. Hence, DFR may be a target of pollinator-mediated selection in the hybrid zone of these two subspecies. Together, our findings suggest that hummingbirds and hawkmoths exhibit contrasting flower color preferences, which may drive the divergence of several floral traits through correlated trait evolution.


Subject(s)
Anthocyanins/biosynthesis , Biological Evolution , Flowers/genetics , Magnoliopsida/genetics , Selection, Genetic , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Animals , Anthocyanins/genetics , Color , Flowers/enzymology , Genetic Fitness , Genetic Variation , Hybridization, Genetic , Magnoliopsida/metabolism , Pigmentation/genetics , Pollination , Quantitative Trait Loci
8.
New Phytol ; 221(1): 553-564, 2019 01.
Article in English | MEDLINE | ID: mdl-29992588

ABSTRACT

Selection to prevent interspecific mating can cause an increase or a decrease in self-pollination in sympatric populations. Characterizing the geographical variation in self and interspecific incompatibilities within a species can reveal if and how the evolution of self and interspecific mate choice are linked. We used controlled pollinations to characterize the variation in self and interspecific incompatibility across 29 populations of Phlox drummondii. We evaluated seed set from these pollinations and described the developmental timing of variation in pollen-pistil compatibility. There is extensive quantitative variation in self-incompatibility and interspecific-incompatibility with its close congener P. cuspidata. Phlox drummondii populations that co-occur and hybridize with P. cuspidata have significantly higher interspecific incompatibility and self-incompatibility than geographically isolated P. drummondii populations. The strength of self and interspecific incompatibility is significantly correlated among individuals and the strength of both incompatibilities is explained by the success of pollen adhesion to the stigma. The correlated strength of self and interspecific incompatibility across the range of P. drummondii and the concurrent developmental timing of the pollen-pistil interaction, suggests these incompatibilities have an overlapping molecular mechanism. The geographical distribution of variation in incompatibilities indicates that this mechanistic link between incompatibilities may affect the evolution of mate choice in plants.


Subject(s)
Biological Evolution , Magnoliopsida/physiology , Self-Incompatibility in Flowering Plants , Flowers/physiology , Hybridization, Genetic , Pollen , Pollination , Sympatry , Texas
9.
Am J Bot ; 106(1): 61-70, 2019 01.
Article in English | MEDLINE | ID: mdl-30609009

ABSTRACT

PREMISE OF THE STUDY: Successful establishment of neopolyploids, and therefore polyploid speciation, is thought to be contingent on environmental niche shifts from their progenitors. We explore this niche shift hypothesis in the obligate outcrosser Arabidopsis arenosa complex, which includes diploid and recently formed autotetraploid populations. METHODS: To characterize the climatic niches for both cytotypes in Arabidopsis arenosa, we first gathered climatic data from localities with known ploidy types. We then estimated the climatic niches for diploids and autotetraploids and calculated niche overlap. Using this niche overlap statistic, we tested for niche equivalency and similarity. We explored differences in niches by estimating and comparing niche optimum and breadth and then calculated indices of niche expansion and unfilling. KEY RESULTS: Climatic niche overlap between diploids and autotetraploids is substantial. Although the two niche models are not significantly divergent, they are not identical as they differ in both optimum and breadth along two environmental gradients. Autotetraploids fill nearly the entire niche space of diploids and have expanded into novel environments. CONCLUSIONS: We find climatic niche expansion but not divergence, together with a moderate change in the niche optimum, in the autotetraploid lineage of Arabidopsis arenosa. These results indicate that the climatic niche shift hypothesis alone cannot explain the coexistence of tetraploid and diploid cytotypes.


Subject(s)
Arabidopsis/genetics , Genetic Speciation , Polyploidy , Climate , Ecosystem
10.
Am Nat ; 191(6): 767-776, 2018 06.
Article in English | MEDLINE | ID: mdl-29750554

ABSTRACT

The astonishing amount of floral diversity has inspired countless assumptions about the function of diverse forms and their adaptive significance, yet many of these hypothesized functions are untested. We investigated an often-repeated adaptive hypothesis about how an extreme floral form functions. In this study, we conducted four investigations to understand the adaptive function of explosive pollination in Kalmia latifolia, the mountain laurel. We first performed a kinematic analysis of anther movement. Second, we constructed a heat map of pollen trajectories in three-dimensional space. Third, we conducted field observations of pollinators and their behaviors while visiting K. latifolia. Finally, we conducted a pollination experiment to investigate the importance of pollinators for fertilization success. Our results suggest that insect visitation dramatically improves fertilization success and that bees are the primary pollinators that trigger explosive pollen release.


Subject(s)
Bees/physiology , Ericaceae/physiology , Flowers/physiology , Animals , Pollination
11.
Plant Physiol ; 173(1): 65-78, 2017 01.
Article in English | MEDLINE | ID: mdl-27895205

ABSTRACT

Hybridization has played an important role in the evolution of many lineages. With the growing availability of genomic tools and advancements in genomic analyses, it is becoming increasingly clear that gene flow between divergent taxa can generate new phenotypic diversity, allow for adaptation to novel environments, and contribute to speciation. Hybridization can have immediate phenotypic consequences through the expression of hybrid vigor. On longer evolutionary time scales, hybridization can lead to local adaption through the introgression of novel alleles and transgressive segregation and, in some cases, result in the formation of new hybrid species. Studying both the abundance and the evolutionary consequences of hybridization has deep historical roots in plant biology. Many of the hypotheses concerning how and why hybridization contributes to biological diversity currently being investigated were first proposed tens and even hundreds of years ago. In this Update, we discuss how new advancements in genomic and genetic tools are revolutionizing our ability to document the occurrence of and investigate the outcomes of hybridization in plants.


Subject(s)
Hybridization, Genetic , Plants/genetics , Biological Evolution , Genetic Speciation , Inbreeding
12.
Mol Ecol ; 26(8): 2317-2330, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28141906

ABSTRACT

Gene flow can impede the evolution of reproductive isolating barriers between species. Reinforcement is the process by which prezygotic reproductive isolation evolves in sympatry due to selection to decrease costly hybridization. It is known that reinforcement can be prevented by too much gene flow, but we still do not know how often have prezygotic barriers evolved in the presence of gene flow or how much gene flow can occur during reinforcement. Flower colour divergence in the native Texas wildflower, Phlox drummondii, is one of the best-studied cases of reinforcement. Here we use genomic analyses to infer gene flow between P. drummondii and a closely related sympatric species, Phlox cuspidata. We de novo assemble transcriptomes of four Phlox species to determine the phylogenetic relationships between these species and find extensive discordance among gene tree topologies across genes. We find evidence of introgression between sympatric P. drummondii and P. cuspidata using the D-statistic, and use phylogenetic analyses to infer the predominant direction of introgression. We investigate geographic variation in gene flow by comparing the relative divergence of genes displaying discordant gene trees between an allopatric and sympatric sample. These analyses support the hypothesis that sympatric P. drummondii has experienced gene flow with P. cuspidata. We find that gene flow between these species is asymmetrical, which could explain why reinforcement caused divergence in only one of the sympatric species. Given the previous research in this system, we suggest strong selection can explain how reinforcement successfully evolved in this system despite gene flow in sympatry.


Subject(s)
Biological Evolution , Gene Flow , Genome, Plant , Magnoliopsida/genetics , Sympatry , Flowers/genetics , Gene Regulatory Networks , Hybridization, Genetic , Models, Genetic , Phylogeny , Texas , Transcriptome
13.
Am J Bot ; 109(5): 668-671, 2022 05.
Article in English | MEDLINE | ID: mdl-35421258

Subject(s)
Plants , Pollination , Flowers
14.
Brain Cogn ; 118: 71-79, 2017 11.
Article in English | MEDLINE | ID: mdl-28800429

ABSTRACT

Some people remember events more completely and accurately than other people, but the origins of individual differences in episodic memory are poorly understood. One way to advance understanding is by identifying characteristics of individuals that reliably covary with memory performance. Recent research suggests motor behavior is related to memory performance, with individuals who consistently use a single preferred hand for unimanual actions performing worse than individuals who make greater use of both hands. This research has relied on self-reports of behavior. It is unknown whether objective measures of motor behavior also predict memory performance. Here, we tested the predictive power of bimanual coordination, an important form of manual dexterity. Bimanual coordination, as measured objectively on the Purdue Pegboard Test, was positively related to correct recall on the California Verbal Learning Test-II and negatively related to false recall. Furthermore, MRI data revealed that cortical surface area in right lateral prefrontal regions was positively related to correct recall. In one of these regions, cortical thickness was negatively related to bimanual coordination. These results suggest that individual differences in episodic memory may partially reflect morphological variation in right lateral prefrontal cortex and suggest a relationship between neural correlates of episodic memory and motor behavior.


Subject(s)
Corpus Callosum/anatomy & histology , Hand/physiology , Memory, Episodic , Mental Recall/physiology , Psychomotor Performance/physiology , Adolescent , Corpus Callosum/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Male
15.
Nature ; 469(7330): 411-4, 2011 Jan 20.
Article in English | MEDLINE | ID: mdl-21217687

ABSTRACT

Species formation generates biological diversity and occurs when traits evolve that prevent gene flow between populations. Discerning the number and distribution of genes underlying these traits and, in a few cases, identifying the genes involved, has greatly enhanced our understanding over the past 15 years of species formation (reviewed by Noor and Feder and Wolf et al.). However, this work has almost exclusively focused on traits that restrict gene flow between populations that have evolved as a by-product of genetic divergence between geographically isolated populations. By contrast, little is known about the characteristics of genes associated with reinforcement, the process by which natural selection directly favours restricted gene flow during the formation of species. Here we identify changes in two genes that appear to cause a flower colour change in Phlox drummondii, which previous work has shown contributes to reinforcement. Both changes involve cis-regulatory mutations to genes in the anthocyanin biosynthetic pathway (ABP). Because one change is recessive whereas the other is dominant, hybrid offspring produce an intermediate flower colour that is visited less by pollinators, and is presumably maladaptive. Thus genetic change selected to increase prezygotic isolation also appears to result in increased postzygotic isolation.


Subject(s)
Genes, Plant/genetics , Genetic Speciation , Magnoliopsida/genetics , Anthocyanins/biosynthesis , Color , Flowers/classification , Flowers/genetics , Flowers/physiology , Genes, Dominant , Genes, Recessive , Genetic Loci/genetics , Hybridization, Genetic/genetics , Magnoliopsida/classification , Magnoliopsida/physiology , Models, Genetic , Molecular Sequence Data , Mutation/genetics , Phenotype , Pigmentation/genetics , Pigmentation/physiology , Pollination , Selection, Genetic/genetics , Texas
16.
Med Teach ; 39(1): 20-25, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27832716

ABSTRACT

This Guide was written as an aid to those who are considering phenomenology as a methodology in their education research. Phenomenology allows us to understand and appreciate educational issues by exploring the unique experiences and perspectives of individuals involved in the process. There are certain core tenets to all phenomenological research, such as a focus on exploring experience and adopting a phenomenological stance. However, because phenomenology has emerged from the work of a number of related but distinct philosophers, phenomenologists do not adhere to a single approach. To help phenomenological researchers position themselves and their work with regard to the various approaches, we offer the "3 + 1" framework. This framework articulates three dimensions on which phenomenological researchers vary: (1) focusing primarily on the general or the particular; (2) managing "pre-understandings" using primarily reduction or reflexivity; and (3) engaging with participants' stories using primarily description or interpretation. We suggest that a researcher need not adhere to a single position with regard to these dimensions, but rather should intentionally and reflectively shift across the various positions depending on purpose and context. The fourth aspect of the framework, writing, overlays these three dimensions, and is central to the reflective enactment of the phenomenological process.


Subject(s)
Education, Medical/organization & administration , Models, Theoretical , Qualitative Research , Research Design , Humans , Negotiating
17.
J Cell Physiol ; 231(12): 2779-88, 2016 12.
Article in English | MEDLINE | ID: mdl-27028516

ABSTRACT

Studies are needed to improve understanding of the osteoblast antioxidant response, and the balance between oxidative homeostasis and osteoblast differentiation. The flavonol quercetin aglycone (QRC) up-regulates the osteoblast antioxidant response in vitro without suppressing osteoblast phenotype, suggesting that QRC may preserve osteoblast phenotypic development in cells subsequently exposed to oxidative stress, which suppresses osteoblast differentiation. The aims of this study were to assess the extent that QRC pretreatment preserved development of the osteoblast phenotype in cells subsequently cultured with hydrogen peroxide, an oxidative stressor, and to characterize alterations in the osteoblast antioxidant response and in key antioxidant signaling pathways. We hypothesized that pretreatment with QRC would preserve phenotypic development after hydrogen peroxide treatment, suppress the hydrogen peroxide-induced antioxidant response, and that the antioxidant response would involve alterations in Nrf2 and ERK1/2 signaling. Results showed that treating fetal rat calvarial osteoblasts for 4 days (D5-9) with 300 µM hydrogen peroxide resulted in fewer alkaline phosphatase-positive cells and mineralized nodules, altered cell morphology, and significantly lower osteoblast phenotypic gene expression (P < 0.05). This suppression was partially blocked when cells were pretreated 12 h with 20 µM QRC. Hydrogen peroxide also produced sustained up-regulation of heme oxygenase-1 (HO-1) and γ-glutamate cysteine ligase catalytic subunit (GCLC), which was partially blocked in hydrogen peroxide-treated cells that first received QRC pretreatment. The alterations in the antioxidant stress response coincided with alterations in phosphorylated ERK1/2, but not Nrf2. These results suggest that QRC suppresses hydrogen peroxide-induced activation of the antioxidant response, and partially preserves osteoblast phenotypic development. J. Cell. Physiol. 231: 2779-2788, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Fetus/pathology , Osteoblasts/pathology , Oxidative Stress/drug effects , Quercetin/pharmacology , Skull/pathology , Alkaline Phosphatase/metabolism , Animals , Antioxidants/pharmacology , Cell Differentiation/drug effects , Cell Shape/drug effects , Female , Hydrogen Peroxide/toxicity , Osteoblasts/drug effects , Osteoblasts/metabolism , Phenotype , Rats, Sprague-Dawley , Up-Regulation/drug effects
18.
J Cell Biochem ; 116(9): 1857-66, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25716194

ABSTRACT

Oxidative stress contributes to osteoporosis by suppressing differentiation of osteoblasts, suggesting the osteoblast antioxidant response may be a viable strategy for osteoporosis prevention. Quercetin, an antioxidant flavonol, up-regulates the antioxidant response in many cell types, but studies are needed to understand the effects of quercetin plasma metabolites on the osteoblast antioxidant response. The first specific aim was to examine antioxidant response genes and proteins in osteoblasts exposed to plasma quercetin metabolites. The second specific aim was to identify potential signaling pathways in the osteoblast antioxidant response that mediate the effect of quercetin, specifically Nrf2, ERK1/2, and NFκB p65. Osteoblasts isolated from fetal rat calvaria were treated with doses up to 20 µM of three different quercetin metabolites found in blood plasma after consumption of quercetin-rich foods or supplements: quercetin aglycone (QRC), isorhamnetin (ISO), or quercetin 3-O-glucuronide (Q3G). Alternatively, some cells received a 2:1:1 mixture of all three metabolites (10 µM Q3G: 5 µM ISO: 5 µM QRC) to evaluate synergistic effects. Antioxidant response genes and proteins known to be up-regulated by quercetin were analyzed along with Nrf2, ERK1/2, and NFκB proteins. Both QRC and ISO, but not Q3G, up-regulated heme oxygenase-1 (HO-1) and γ-glutamate cysteine ligase catalytic subunit (GCLC) at the mRNA and protein level. Synergistic effects of metabolites were not observed. Up-regulation of HO-1 and GCLC was associated with suppression of phosphorylated ERK1/2 and NFκB, but no alterations in Nrf2 protein levels were observed. This study shows that the antioxidant response of osteoblasts is differentially stimulated by quercetin metabolites.


Subject(s)
Antioxidants/pharmacology , Osteoblasts/drug effects , Quercetin/analogs & derivatives , Signal Transduction/drug effects , Skull/embryology , Animals , Cells, Cultured , Osteoblasts/metabolism , Phosphorylation/drug effects , Quercetin/pharmacology , Rats , Skull/cytology , Up-Regulation
19.
Am Nat ; 183(5): 693-710, 2014 May.
Article in English | MEDLINE | ID: mdl-24739201

ABSTRACT

Reinforcement is the process by which increased reproductive isolation between incipient species evolves due to selection against maladaptive hybrids or costly hybrid mating. Reinforcement is predicted to create a pattern of greater prezygotic reproductive isolation in regions where the two species co-occur, sympatry, than in allopatry. Although most research on reinforcement focuses on understanding the evolutionary forces acting in sympatry, here we consider what prevents the alleles conferring greater reproductive isolation from spreading into allopatry. We investigate flower color divergence in the wildflower Phlox drummondii, which is caused by reinforcement in the regions sympatric with its congener Phlox cuspidata. Specifically, we performed common garden field experiments and pollinator observations to estimate selection acting on flower color variation in allopatry. We combine our estimates of maternal and paternal fitness using simulations and predict how flower color alleles migrating from sympatry will evolve in allopatry. Our results suggest that strong pollinator preference for the ancestral flower color in allopatry can maintain divergence between allopatric and sympatric populations.


Subject(s)
Color , Flowers/genetics , Magnoliopsida/genetics , Pollination , Animals , Behavior, Animal , Butterflies , Fertility , Genetic Fitness , Reproductive Isolation , Selection, Genetic , Sympatry
20.
Evolution ; 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39276149

ABSTRACT

Characterizing the mechanisms of reproductive isolation (RI) between lineages is key to determining how new species are formed and maintained. In flowering plants, interactions between the reproductive organs of the flower -the pollen and the pistil- serve as the last barrier to reproduction before fertilization. As such, these pollen-pistil interactions are both complex and important for determining a suitable mate. Here, we test whether differences in style length (a part of the pistil) generate a postmating prezygotic mechanical barrier between five species of perennial Phlox wildflowers with geographically overlapping distributions. We perform controlled pairwise reciprocal crosses between three species with long styles and two species with short styles to assess crossing success (seed set). We find that heterospecific seed set is broadly reduced compared to conspecific cross success and reveal a striking asymmetry in heterospecific crosses between species with different style lengths. To determine the mechanism underlying this asymmetric reproductive isolating barrier we assess pollen tube growth in vivo and in vitro. We demonstrate that pollen tubes of short-styled species do not grow long enough to reach the ovaries of long-styled species. We find that short-styled species also have smaller pollen and that both within and between species pollen diameter is highly correlated with pollen tube length. Our results support the hypothesis that the small pollen of short-styled species lacks resources to grow pollen tubes long enough to access the ovaries of the long-styled species, resulting in an asymmetrical, mechanical barrier to reproduction. Such reproductive isolating mechanisms, combined with additional pollen-pistil incompatibilities, may be particularly important for closely related species in geographic proximity that share pollinators.

SELECTION OF CITATIONS
SEARCH DETAIL