Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 169(3): 510-522.e20, 2017 04 20.
Article in English | MEDLINE | ID: mdl-28431249

ABSTRACT

Organ-specific functions of tissue-resident macrophages in the steady-state heart are unknown. Here, we show that cardiac macrophages facilitate electrical conduction through the distal atrioventricular node, where conducting cells densely intersperse with elongated macrophages expressing connexin 43. When coupled to spontaneously beating cardiomyocytes via connexin-43-containing gap junctions, cardiac macrophages have a negative resting membrane potential and depolarize in synchrony with cardiomyocytes. Conversely, macrophages render the resting membrane potential of cardiomyocytes more positive and, according to computational modeling, accelerate their repolarization. Photostimulation of channelrhodopsin-2-expressing macrophages improves atrioventricular conduction, whereas conditional deletion of connexin 43 in macrophages and congenital lack of macrophages delay atrioventricular conduction. In the Cd11bDTR mouse, macrophage ablation induces progressive atrioventricular block. These observations implicate macrophages in normal and aberrant cardiac conduction.


Subject(s)
Heart Conduction System , Macrophages/physiology , Animals , Connexin 43/metabolism , Female , Heart Atria/cytology , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Myocytes, Cardiac/physiology
2.
Circ Res ; 133(4): 313-329, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37449401

ABSTRACT

BACKGROUND: ZFHX3 (zinc finger homeobox 3), a gene that encodes a large transcription factor, is at the second-most significantly associated locus with atrial fibrillation (AF), but its function in the heart is unknown. This study aims to identify causative genetic variation related to AF at the ZFHX3 locus and examine the impact of Zfhx3 loss on cardiac function in mice. METHODS: CRISPR-Cas9 genome editing, chromatin immunoprecipitation, and luciferase assays in pluripotent stem cell-derived cardiomyocytes were used to identify causative genetic variation related to AF at the ZFHX3 locus. Cardiac function was assessed by echocardiography, magnetic resonance imaging, electrophysiology studies, calcium imaging, and RNA sequencing in mice with heterozygous and homozygous cardiomyocyte-restricted Zfhx3 loss (Zfhx3 Het and knockout, respectively). Human cardiac single-nucleus ATAC (assay for transposase-accessible chromatin)-sequencing data was analyzed to determine which genes in atrial cardiomyocytes are directly regulated by ZFHX3. RESULTS: We found single-nucleotide polymorphism (SNP) rs12931021 modulates an enhancer regulating ZFHX3 expression, and the AF risk allele is associated with decreased ZFHX3 transcription. We observed a gene-dose response in AF susceptibility with Zfhx3 knockout mice having higher incidence, frequency, and burden of AF than Zfhx3 Het and wild-type mice, with alterations in conduction velocity, atrial action potential duration, calcium handling and the development of atrial enlargement and thrombus, and dilated cardiomyopathy. Zfhx3 loss results in atrial-specific differential effects on genes and signaling pathways involved in cardiac pathophysiology and AF. CONCLUSIONS: Our findings implicate ZFHX3 as the causative gene at the 16q22 locus for AF, and cardiac abnormalities caused by loss of cardiac Zfhx3 are due to atrial-specific dysregulation of pathways involved in AF susceptibility. Together, these data reveal a novel and important role for Zfhx3 in the control of cardiac genes and signaling pathways essential for normal atrial function.


Subject(s)
Atrial Fibrillation , Homeodomain Proteins , Animals , Humans , Mice , Atrial Fibrillation/genetics , Calcium/metabolism , Dilatation , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Myocytes, Cardiac/metabolism , Transcription Factors/genetics
3.
Circ Res ; 127(1): 91-110, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32716814

ABSTRACT

Atrial fibrillation (AF) is the most common sustained arrhythmia encountered in humans and is a significant source of morbidity and mortality. Despite its prevalence, our mechanistic understanding is incomplete, the therapeutic options have limited efficacy, and are often fraught with risks. A better biological understanding of AF is needed to spearhead novel therapeutic avenues. Although "natural" AF is nearly nonexistent in most species, animal models have contributed significantly to our understanding of AF and some therapeutic options. However, the impediments of animal models are also apparent and stem largely from the differences in basic physiology as well as the complexities underlying human AF; these preclude the creation of a "perfect" animal model and have obviated the translation of animal findings. Herein, we review the vast array of AF models available, spanning the mouse heart (weighing 1/1000th of a human heart) to the horse heart (10× heavier than the human heart). We attempt to highlight the features of each model that bring value to our understanding of AF but also the shortcomings and pitfalls. Finally, we borrowed the concept of a SWOT analysis from the business community (which stands for strengths, weaknesses, opportunities, and threats) and applied this introspective type of analysis to animal models for AF. We identify unmet needs and stress that is in the context of rapidly advancing technologies, these present opportunities for the future use of animal models.


Subject(s)
Atrial Fibrillation/physiopathology , Disease Models, Animal , Animals , Animals, Laboratory/anatomy & histology , Animals, Laboratory/physiology , Atrial Fibrillation/etiology , Atrial Fibrillation/pathology , Humans , Species Specificity
4.
Pacing Clin Electrophysiol ; 44(5): 895-902, 2021 May.
Article in English | MEDLINE | ID: mdl-33675073

ABSTRACT

BACKGROUND: There are limited data on the comparative analyses of TightRail rotating dilator sheath (Philips) and laser sheath for lead extraction. OBJECTIVE: To evaluate the effectiveness and safety of the TightRail sheath as a primary or secondary tool for transvenous lead extraction (TLE). METHODS: Retrospective cohort analysis of 202 consecutive patients who underwent TLE using either TightRail sheath and/or GlideLight laser sheath (Philips) in our hospital. The study population was divided into three groups: Group A underwent TLE with laser sheath only (N = 157), Group B with TightRail sheath only (N = 22), and Group C with both sheaths (N = 23). RESULTS: During this period, 375 leads in 202 patients were extracted, including 297 leads extracted by laser sheath alone, 45 leads by TightRail sheath alone, and 33 by both TightRail sheath and laser sheaths. The most common indications included device infection (44.6%) and lead-related complications (44.1%). The median age of leads was 8.9 years. TightRail sheath (Group B) achieved similar efficacy as a primary extraction tool compared with laser sheath (Group A), with complete procedure success rate of 93.3% (vs. 96.6%, P = .263) and clinical success rate of 100.0% (vs. 98.1%, P = .513). Among 32 leads in which Tightrail was used after laser had failed (Group C), the complete procedure success rate was 75.8%. No significant difference in procedural adverse events was observed. CONCLUSION: Our single-center experience confirms that the TightRail system is an effective first-line and second-line method for TLE. Further investigation is required to guide the selection of mechanical and laser sheaths in lead extraction cases.


Subject(s)
Device Removal/instrumentation , Electrodes, Implanted , Defibrillators, Implantable , Equipment Design , Female , Humans , Lasers , Male , Middle Aged , Pacemaker, Artificial , Retrospective Studies
5.
Catheter Cardiovasc Interv ; 92(2): 222-246, 2018 08 01.
Article in English | MEDLINE | ID: mdl-30160001

ABSTRACT

The stimulus to create this document was the recognition that ionizing radiation-guided cardiovascular procedures are being performed with increasing frequency, leading to greater patient radiation exposure and, potentially, to greater exposure to clinical personnel. While the clinical benefit of these procedures is substantial, there is concern about the implications of medical radiation exposure. ACC leadership concluded that it is important to provide practitioners with an educational resource that assembles and interprets the current radiation knowledge base relevant to cardiovascular procedures. By applying this knowledge base, cardiovascular practitioners will be able to select procedures optimally, and minimize radiation exposure to patients and to clinical personnel. "Optimal Use of Ionizing Radiation in Cardiovascular Imaging - Best Practices for Safety and Effectiveness" is a comprehensive overview of ionizing radiation use in cardiovascular procedures and is published online. To provide the most value to our members, we divided the print version of this document into 2 focused parts. "Part I: Radiation Physics and Radiation Biology" addresses radiation physics, dosimetry and detrimental biologic effects. "Part II: Radiologic Equipment Operation, Dose-Sparing Methodologies, Patient and Medical Personnel Protection" covers the basics of operation and radiation delivery for the 3 cardiovascular imaging modalities (x-ray fluoroscopy, x-ray computed tomography, and nuclear scintigraphy). For each modality, it includes the determinants of radiation exposure and techniques to minimize exposure to both patients and to medical personnel.


Subject(s)
Cardiac Imaging Techniques/standards , Cardiovascular Diseases/diagnostic imaging , Occupational Exposure/standards , Radiation Dosage , Radiation Exposure/standards , Benchmarking/standards , Consensus , Evidence-Based Medicine/standards , Humans , Occupational Exposure/adverse effects , Occupational Exposure/prevention & control , Patient Safety/standards , Predictive Value of Tests , Radiation Exposure/adverse effects , Radiation Exposure/prevention & control , Risk Assessment , Risk Factors
6.
Catheter Cardiovasc Interv ; 92(2): 203-221, 2018 08 01.
Article in English | MEDLINE | ID: mdl-30160013

ABSTRACT

The stimulus to create this document was the recognition that ionizing radiation-guided cardiovascular procedures are being performed with increasing frequency, leading to greater patient radiation exposure and, potentially, to greater exposure for clinical personnel. Although the clinical benefit of these procedures is substantial, there is concern about the implications of medical radiation exposure. The American College of Cardiology leadership concluded that it is important to provide practitioners with an educational resource that assembles and interprets the current radiation knowledge base relevant to cardiovascular procedures. By applying this knowledge base, cardiovascular practitioners will be able to select procedures optimally, and minimize radiation exposure to patients and to clinical personnel. Optimal Use of Ionizing Radiation in Cardiovascular Imaging: Best Practices for Safety and Effectiveness is a comprehensive overview of ionizing radiation use in cardiovascular procedures and is published online. To provide the most value to our members, we divided the print version of this document into 2 focused parts. Part I: Radiation Physics and Radiation Biology addresses the issue of medical radiation exposure, the basics of radiation physics and dosimetry, and the basics of radiation biology and radiation-induced adverse effects. Part II: Radiological Equipment Operation, Dose-Sparing Methodologies, Patient and Medical Personnel Protection covers the basics of operation and radiation delivery for the 3 cardiovascular imaging modalities (x-ray fluoroscopy, x-ray computed tomography, and nuclear scintigraphy) and will be published in the next issue of the Journal.


Subject(s)
Cardiac Imaging Techniques/standards , Cardiovascular Diseases/diagnostic imaging , Radiation Dosage , Radiation Exposure/standards , Benchmarking/standards , Consensus , Evidence-Based Medicine/standards , Humans , Patient Safety/standards , Predictive Value of Tests , Radiation Exposure/adverse effects , Radiation Exposure/prevention & control , Risk Assessment , Risk Factors
8.
Circulation ; 130(13): 1044-52, 2014 Sep 23.
Article in English | MEDLINE | ID: mdl-25070665

ABSTRACT

BACKGROUND: Accurate detection of recurrent same-site deep vein thrombosis (DVT) is a challenging clinical problem. Because DVT formation and resolution are associated with a preponderance of inflammatory cells, we investigated whether noninvasive (18)F-fluorodeoxyglucose (FDG)-positron emission tomography (PET) imaging could identify inflamed, recently formed thrombi and thereby improve the diagnosis of recurrent DVT. METHODS AND RESULTS: We established a stasis-induced DVT model in murine jugular veins and also a novel model of recurrent stasis DVT in mice. C57BL/6 mice (n=35) underwent ligation of the jugular vein to induce stasis DVT. FDG-PET/computed tomography (CT) was performed at DVT time points of day 2, 4, 7, 14, or 2+16 (same-site recurrent DVT at day 2 overlying a primary DVT at day 16). Antibody-based neutrophil depletion was performed in a subset of mice before DVT formation and FDG-PET/CT. In a clinical study, 38 patients with lower extremity DVT or controls undergoing FDG-PET were analyzed. Stasis DVT demonstrated that the highest FDG signal occurred at day 2, followed by a time-dependent decrease (P<0.05). Histological analyses demonstrated that thrombus neutrophils (P<0.01), but not macrophages, correlated with thrombus PET signal intensity. Neutrophil depletion decreased FDG signals in day 2 DVT in comparison with controls (P=0.03). Recurrent DVT demonstrated significantly higher FDG uptake than organized day 14 DVT (P=0.03). The FDG DVT signal in patients also exhibited a time-dependent decrease (P<0.01). CONCLUSIONS: Noninvasive FDG-PET/CT identifies neutrophil-dependent thrombus inflammation in murine DVT, and demonstrates a time-dependent signal decrease in both murine and clinical DVT. FDG-PET/CT may offer a molecular imaging strategy to accurately diagnose recurrent DVT.


Subject(s)
Neutrophils/diagnostic imaging , Positron-Emission Tomography , Thrombosis/diagnostic imaging , Tomography, X-Ray Computed , Venous Thrombosis/diagnostic imaging , Animals , Case-Control Studies , Cohort Studies , Disease Models, Animal , Female , Fluorodeoxyglucose F18/pharmacokinetics , Humans , Ligation , Male , Mice , Mice, Inbred C57BL , Middle Aged , Multimodal Imaging , Neutropenia/diagnostic imaging , Recurrence , Retrospective Studies , Sensitivity and Specificity , Thrombosis/metabolism , Time Factors , Venous Thrombosis/metabolism
10.
JACC Clin Electrophysiol ; 9(5): 680-685, 2023 05.
Article in English | MEDLINE | ID: mdl-36752474

ABSTRACT

Intramural ventricular arrhythmias are challenging to treat. Adjunctive techniques such as bipolar ablation, ethanol injection, use of a needle catheter, or surgery have been described. These are often not readily available. This is a case report of a patient with refractory intramural ventricular arrhythmia that was ablated by incorporating electrodes of a mapping catheter into the ablation circuit. The results of ex vivo experiments to determine the characteristics of multipolar ablation lesions using different ablation settings are reported. The feasibility of generating transmural lesions with multipolar ablation in vivo in a porcine model was tested.


Subject(s)
Catheter Ablation , Tachycardia, Ventricular , Animals , Swine , Arrhythmias, Cardiac/surgery , Electrodes , Ethanol , Catheter Ablation/methods
11.
Metabolism ; 145: 155608, 2023 08.
Article in English | MEDLINE | ID: mdl-37268056

ABSTRACT

BACKGROUND: Myocardial infarction (MI) is a major risk factor for the development of heart failure with reduce ejection fraction (HFrEF). While previous studies have focused on HFrEF, the cardiovascular effects of ketone bodies in acute MI are unclear. We examined the effects of oral ketone supplementation as a potential treatment strategy in a swine acute MI model. METHODS: Farm pigs underwent percutaneous balloon occlusion of the LAD for 80 min followed by 72 h reperfusion period. Oral ketone ester or vehicle was administered during reperfusion and continued during the follow-up period. RESULTS: Oral KE supplementation induced ketonemia 2-3 mmol/l within 30 min after ingestion. KE increased ketone (ßHB) extraction in healthy hearts without affecting glucose and fatty acid (FA) consumption. During reperfusion, the MI hearts consumed less FA with no change in glucose consumption, whereas hearts from MI-KE-fed animals consumed more ßHB and FA, as well as improved myocardial ATP production. A significant elevation of infarct T2 values indicative of inflammation was found only in untreated MI group compared to sham. Concordantly, cardiac expression of inflammatory markers, oxidative stress, and apoptosis were reduced by KE. RNA-seq analysis identified differentially expressed genes related to mitochondrial energy metabolism and inflammation. CONCLUSIONS: Oral KE supplementation induced ketosis and enhanced myocardial ßHB extraction in both healthy and infarcted hearts. Acute oral supplementation with KE favorably altered cardiac substrate uptake and utilization, improved cardiac ATP levels, and reduced cardiac inflammation following MI.


Subject(s)
Heart Failure , Myocardial Infarction , Swine , Animals , Ketones/pharmacology , Stroke Volume , Disease Models, Animal , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Adenosine Triphosphate , Glucose/pharmacology , Dietary Supplements
12.
Korean J Anesthesiol ; 75(3): 216-230, 2022 06.
Article in English | MEDLINE | ID: mdl-35350095

ABSTRACT

Myocardial infarction (MI) is the leading cause of death from coronary heart disease and requires immediate reperfusion therapy with thrombolysis, primary percutaneous coronary intervention, or coronary artery bypass grafting. However, myocardial reperfusion therapy is often accompanied by cardiac ischemia/reperfusion (I/R) injury, which leads to myocardial injury with detrimental consequences. The causes of I/R injury are unclear, but are multifactorial, including free radicals, reactive oxygen species, calcium overload, mitochondria dysfunction, inflammation, and neutrophil-mediated vascular injury. Mild hypothermia has been introduced as one of the potential inhibitors of myocardial I/R injury. Although animal studies have demonstrated that mild hypothermia significantly reduces or delays I/R myocardium damage, human trials have not shown clinical benefits in acute MI (AMI). In addition, the practice of hypothermia treatment is increasing in various fields such as surgical anesthesia and intensive care units. Adequate sedation for anesthetic procedures and protection from body shivering has become essential during therapeutic hypothermia. Therefore, anesthesiologists should be aware of the effects of therapeutic hypothermia on the metabolism of anesthetic drugs. In this paper, we review the existing data on the use of therapeutic hypothermia for AMI in animal models and human clinical trials to better understand the discrepancy between perceived benefits in preclinical animal models and the absence thereof in clinical trials thus far.


Subject(s)
Hypothermia, Induced , Hypothermia , Myocardial Infarction , Myocardial Reperfusion Injury , Percutaneous Coronary Intervention , Animals , Humans , Hypothermia, Induced/adverse effects , Hypothermia, Induced/methods , Myocardial Infarction/complications , Myocardial Infarction/therapy , Myocardial Reperfusion Injury/prevention & control , Percutaneous Coronary Intervention/adverse effects
14.
Circ Res ; 104(7): 915-23, 2009 Apr 10.
Article in English | MEDLINE | ID: mdl-19246679

ABSTRACT

Surface electrode recordings cannot delineate the activation within the human or canine sinoatrial node (SAN) because they are intramural structures. Thus, the site of origin of excitation and conduction pathway(s) within the SAN of these mammals remains unknown. Canine right atrial preparations (n=7) were optically mapped. The SAN 3D structure and protein expression were mapped using immunohistochemistry. SAN optical action potentials had diastolic depolarization and multiple upstroke components that corresponded to the separate excitations of the node and surface atrial layers. Pacing-induced SAN exit block eliminated atrial optical action potential components but retained SAN optical action potential components. Excitation originated in the SAN (cycle length, 557+/-72 ms) and slowly spread (1.2 to 14 cm/sec) within the SAN, failing to directly excite the crista terminalis and intraatrial septum. After a 49+/-22 ms conduction delay within the SAN, excitation reached the atrial myocardium via superior and/or inferior sinoatrial exit pathways 8.8+/-3.2 mm from the leading pacemaker site. The ellipsoidal 13.7+/-2.8/4.9+/-0.6 mm SAN structure was functionally insulated from the atrium. This insulation coincided with connexin43-negative regions at the borders of the node, connective tissue, and coronary arteries. During normal sinus rhythm, the canine SAN is functionally insulated from the surrounding atrial myocardium except for 2 (or more) narrow superior and inferior sinoatrial exit pathways separated by 12.8+/-4.1 mm. Conduction failure in these sinoatrial exit pathways leads to SAN exit block and is a modulator of heart rate.


Subject(s)
Atrial Function , Heart Rate , Myocytes, Cardiac/physiology , Sinoatrial Node/physiology , Action Potentials , Animals , Cardiac Pacing, Artificial , Connexin 43/analysis , Dogs , Electrophysiologic Techniques, Cardiac , Fluorescent Antibody Technique , Heart Atria/cytology , In Vitro Techniques , Myocytes, Cardiac/chemistry , Optical Devices , Signal Processing, Computer-Assisted , Sinoatrial Node/chemistry , Sinoatrial Node/cytology , Time Factors
15.
Circ Arrhythm Electrophysiol ; 14(4): e009668, 2021 04.
Article in English | MEDLINE | ID: mdl-33858178

ABSTRACT

Symptomatic heart failure (HF) patients despite optimal medical therapy and advances such as invasive hemodynamic monitoring remain challenging to manage. While cardiac resynchronization therapy remains a highly effective therapy for a subset of HF patients with wide QRS, a majority of symptomatic HF patients are poor candidates for such. Recently, cardiac contractility modulation, neuromodulation based on carotid baroreceptor stimulation, and phrenic nerve stimulation have been approved by the US Food and Drug Administration and are emerging as therapeutic options for symptomatic HF patients. This state-of-the-art review examines the role of these evolving electrical therapies in advanced HF.


Subject(s)
Autonomic Nervous System/physiopathology , Electric Stimulation Therapy , Heart Failure/therapy , Heart/innervation , Myocardial Contraction , Stroke Volume , Ventricular Function, Left , Animals , Cardiac Pacing, Artificial , Electric Stimulation Therapy/adverse effects , Electric Stimulation Therapy/instrumentation , Heart Failure/diagnosis , Heart Failure/epidemiology , Heart Failure/physiopathology , Humans , Pacemaker, Artificial , Prevalence , Recovery of Function , Spinal Cord Stimulation , Treatment Outcome , Vagus Nerve Stimulation
16.
Heart Rhythm ; 18(4): 632-640, 2021 04.
Article in English | MEDLINE | ID: mdl-33346136

ABSTRACT

BACKGROUND: Atrial fibrillation (AF) is the most common arrhythmia occurring in humans, and new treatment strategies are critically needed. The lack of reliable preclinical animal models of AF is a major limitation to drug development of novel antiarrhythmic compounds. OBJECTIVE: The purpose of this study was to provide a comprehensive head-to-head assessment of 5 canine AF models. METHODS: Five canine models were evaluated for the efficacy of AF induction and AF duration. We tested 2 acute models: short-term atrial tachypacing (AT) for 6 hours with analysis of AF at hourly increments, and carbachol injection into a cardiac fat pad followed by short-term AT. We also tested 3 chronic models: pacemaker implantation followed by either 4 weeks of AT and subsequent atrial burst pacing or intermittent long-term AT for up to 4-5 months to generate AF ≥4.5 hours, and finally ventricular tachypacing to induce heart failure followed by atrial burst pacing to induce AF. RESULTS: Careful evaluation showed that acute AT, AT for 4 weeks, and the heart failure model all were unsuccessful in generating reproducible AF episodes of sufficient duration to study antiarrhythmic drugs. In contrast, intermittent long-term AT generated AF lasting ≥4.5 hours in ∼30% of animals. The acute model using carbachol and short-term AT resulted in AF induction of ≥15 minutes in ≥75% of animals, thus enabling testing of antiarrhythmic drugs. CONCLUSION: Intermittent long-term AT and the combination of local carbachol injection with successive short-term AT may contribute to future drug development efforts for AF treatment.


Subject(s)
Atrial Fibrillation/drug therapy , Carbachol/administration & dosage , Drug Discovery/methods , Animals , Cardiotonic Agents/administration & dosage , Disease Models, Animal , Dogs , Dose-Response Relationship, Drug , Injections , Treatment Outcome
17.
JACC Case Rep ; 3(15): 1656-1660, 2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34766013

ABSTRACT

We present the case of a woman who developed presumed spontaneous coronary artery dissection of a septal branch. She later developed high-grade atrioventricular block that led to a diagnosis of cardiac sarcoidosis involving the interventricular septum. This case illustrates a rare and challenging presentation of cardiac sarcoidosis. (Level of Difficulty: Beginner.).

18.
Int J Cardiol Heart Vasc ; 34: 100811, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34095452

ABSTRACT

BACKGROUND: Heart failure (HF) patients with CRT devices are a vulnerable patient population during the Coronavirus Disease 2019 (COVID-19) Pandemic. It is important to develop innovative virtual care models to deliver multidisciplinary care while minimizing the risk of SARS-CoV2 exposure. OBJECTIVE: We aim to provide a description of how HF patients with CRT devices were assessed and managed in our virtual multidisciplinary clinic during the COVID-19 Pandemic. Clinical outcomes between this group of patients seen in virtual clinic and a historical cohort followed by in-person multi-disciplinary clinic prior to the pandemic were compared. METHOD: This is a retrospective cohort study of HF patients with CRT implants who were seen in the virtual multidisciplinary clinic from March 18th, 2020 to May 27th, 2020 (Virtual Visit Group, N = 43). A historical cohort of HF patients with CRT devices seen in the ReACT clinic in person during the same calendar time period in 2019 was used as a control group (In-Person Visit Group, N = 39). Both groups were followed until July 1st of the same calendar year (2020 or 2019) for clinical events. The primary outcome measure was a combined outcome of all-cause mortality and HF- or device-related hospitalizations during follow-up. The secondary outcome measures included patient satisfaction, COVID-19 infection, and other cardiovascular events. RESULTS: In the Virtual-Visit Group, 21 patients (48.8%) had their initial ReACT clinic visit (first visit after CRT implant) as a virtual visit; 22 patients (51.2%) had prior in-person ReACT clinic visits before the first virtual visit. During the virtual visits, 12 patients had either potential cardiac symptoms or significant device interrogation findings that required clinical intervention. In post-virtual clinic patient satisfaction survey, all 22 patients surveyed (100%) reported being very satisfied or satisfied with the overall experience of the virtual clinic, and every patient (100%) said they would like to use telemedicine again. During a median follow-up period of 82 days (interquartile range [IQR] 61-96 days), one patient died from pneumonia of unclear etiology at an outside hospital, without documentation of COVID-19 positivity. No patient was hospitalized for HF- or arrhythmia-related complications. No patient was diagnosed with COVID-19. Compared with the In-Person Visit Group, there was no significant increase in mortality or major cardiovascular events in the Virtual-Visit Group (2.3% versus 5.1%, P = 0.60). CONCLUSIONS AND RELEVANCE: Virtual multidisciplinary care was feasible for HF patients with cardiac resynchronization therapy devices and achieved good patient satisfaction. Virtual care was not associated with short-term increase in adverse events for HF patients with CRT device during the COVID-19 Pandemic. This virtual care model could help promote the adoption of digital health methodology for high-risk patients with multiple cardiac comorbidities.

20.
Pacing Clin Electrophysiol ; 33(6): 754-62, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20180918

ABSTRACT

The atrioventricular node (AVN) has mystified generations of investigators over the last century and continues today to be at the epicenter of debates among anatomists, experimentalists, and electrophysiologists. Over the years, discrepancies have remained in regard to correlating components of AVN structure to function, as evidenced by studies from microelectrodes, optical mapping, and the electrophysiology laboratory. Historically, the AVN has been defined by classical histological methods; however, with recent advances in molecular biology techniques, a more precise characterization of structure is becoming attainable. Distinct molecular compartments are becoming apparent based on connexin staining and genotyping, providing new insight into previously characterized functional aspects of the AVN and its surrounding structures. Advances in optical mapping have provided a unique opportunity for correlating structure and function--unmasking properties of the native AVN pacemaker and providing further insight into basic mechanisms involved in AV conduction. Additionally, procurement of explanted human hearts have provided a unique opportunity to further characterize the human AVN structurally and functionally with both molecular biology techniques and optical mapping. With the elucidation of basic elements of both structure and function via molecular investigation and optical mapping, new opportunities are becoming apparent in utilizing the unique properties of the AVN for pursuing novel clinical applications relevant to clinical electrophysiology.


Subject(s)
Atrioventricular Node/anatomy & histology , Atrioventricular Node/physiology , Animals , Humans , Voltage-Sensitive Dye Imaging
SELECTION OF CITATIONS
SEARCH DETAIL