Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
PLoS One ; 10(2): e0115039, 2015.
Article in English | MEDLINE | ID: mdl-25714731

ABSTRACT

Assessing and managing water use is crucial for supporting sustainable river basin management and regional development. The first consistent and comprehensive assessment of sectorial water use in the Pearl River Delta (PRD) is presented by analysing homogenized annual water use data from 2000 to 2010 in relation to socio economic statistics for the same period. An abstraction of water use, using the concept of water use intensity, and based on equations inspired by those used in global water resource models, is developed to explore the driving forces underlying water use changes in domestic, industrial and agricultural sectors. We do this at both the level of the region as a whole, as well as for the nine cities that constitute the PRD separately. We find that, despite strong population and economic growth, the PRD managed to stabilize its absolute water use by significant improvements in industrial water use intensities, and early stabilisation of domestic water use intensities. Results reveal large internal differentiation of sectorial water use among the cities in this region, with industrial water use intensity varying from -80 to +95% and domestic water use intensity by +/- 30% compared to the PRD average. In general, per capita water use is highest in the cities that industrialised first. Yet, all cities except Guangzhou are expected to approach a saturation value of per capita water use much below what is suggested in recent global studies. Therefore, existing global assessments probably have overestimated future domestic water use in developing countries. Although scarce and uncertain input data and model limitations lead to a high level of uncertainty, the presented conceptualization of water use is useful in exploring the underlying driving forces of water use trends.


Subject(s)
Agriculture , Environmental Monitoring , Industry , Rivers , Urbanization , Water , China , Geography
2.
Science ; 300(5625): 1538-42, 2003 Jun 06.
Article in English | MEDLINE | ID: mdl-12764201

ABSTRACT

Most inverse atmospheric models report considerable uptake of carbon dioxide in Europe's terrestrial biosphere. In contrast, carbon stocks in terrestrial ecosystems increase at a much smaller rate, with carbon gains in forests and grassland soils almost being offset by carbon losses from cropland and peat soils. Accounting for non-carbon dioxide carbon transfers that are not detected by the atmospheric models and for carbon dioxide fluxes bypassing the ecosystem carbon stocks considerably reduces the gap between the small carbon-stock changes and the larger carbon dioxide uptake estimated by atmospheric models. The remaining difference could be because of missing components in the stock-change approach, as well as the large uncertainty in both methods. With the use of the corrected atmosphere- and land-based estimates as a dual constraint, we estimate a net carbon sink between 135 and 205 teragrams per year in Europe's terrestrial biosphere, the equivalent of 7 to 12% of the 1995 anthropogenic carbon emissions.


Subject(s)
Atmosphere , Carbon Dioxide , Ecosystem , Trees , Agriculture , Biomass , Carbon/analysis , Carbon/metabolism , Carbon Dioxide/metabolism , Climate , Crops, Agricultural , Europe , Soil , Trees/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL