Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Int J Biometeorol ; 58(9): 1941-50, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24510118

ABSTRACT

Balancing thermal comfort with the requirement of energy conservation presents a challenge in hot and humid areas where air-conditioning (AC) is frequently used in cooling indoor air. A field survey was conducted in Taiwan to demonstrate the adaptive behaviors of occupants in relation to the use of fans and AC in a school building employing mixed-mode ventilation where AC use was managed under a fee-for-service mechanism. The patterns of using windows, fans, and AC as well as the perceptions of students toward the thermal environment were examined. The results of thermal perception evaluation in relation to the indoor thermal conditions were compared to the levels of thermal comfort predicted by the adaptive models described in the American Society of Heating, Refrigerating, and Air-Conditioning Engineers Standard 55 and EN 15251 and to that of a local model for evaluating thermal adaption in naturally ventilated buildings. A thermal comfort-driven adaptive behavior model was established to illustrate the probability of fans/AC use at specific temperature and compared to the temperature threshold approach to illustrate the potential energy saving the fee-for-service mechanism provided. The findings of this study may be applied as a reference for regulating the operation of AC in school buildings of subtropical regions.


Subject(s)
Air Conditioning/economics , Body Temperature Regulation , Conservation of Energy Resources/economics , Consumer Behavior/economics , Fee-for-Service Plans/economics , Schools/statistics & numerical data , Students/statistics & numerical data , Air Conditioning/statistics & numerical data , Conservation of Energy Resources/statistics & numerical data , Consumer Behavior/statistics & numerical data , Data Collection , Taiwan
2.
Int J Biometeorol ; 58(9): 1927-39, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24478000

ABSTRACT

Thermal comfort is a subjective psychological perception of people based also on physiological thermoregulation mechanisms when the human body is exposed to a combination of various environmental factors including air temperature, air humidity, wind speed, and radiation conditions. Due to the importance of gender in the issue of outdoor thermal comfort, this study compared and examined the thermal comfort-related differences between male and female subjects using previous data from Taiwanese questionnaire survey. Compared with males, the results indicated that females in Taiwan are less tolerant to hot conditions and intensely protect themselves from sun exposure. Our analytical results are inconsistent with the findings of previous physiological studies concerning thermal comfort indicating that females have superior thermal physiological tolerance than males. On the contrary, our findings can be interpreted on psychological level. Environmental behavioral learning theory was adopted in this study to elucidate this observed contradiction between the autonomic thermal physiological and psychological-behavioral aspects. Women might desire for a light skin tone through social learning processes, such as observation and education, which is subsequently reflected in their psychological perceptions (fears of heat and sun exposure) and behavioral adjustments (carrying umbrellas or searching for shade). Hence, these unique psychological and behavioral phenomena cannot be directly explained by autonomic physiological thermoregulation mechanisms. The findings of this study serve as a reference for designing spaces that accommodates gender-specific thermal comfort characteristics. Recommendations include providing additional suitable sheltered areas in open areas, such as city squares and parks, to satisfy the thermal comfort needs of females.


Subject(s)
Climate , Emotions , Environment , Hot Temperature , Humidity , Thermosensing , Wind , Adult , Aged , Female , Humans , Male , Middle Aged , Sex Distribution , Surveys and Questionnaires , Taiwan/epidemiology , Young Adult
3.
Int J Biometeorol ; 54(3): 221-30, 2010 May.
Article in English | MEDLINE | ID: mdl-19851789

ABSTRACT

While thermal comfort in mass transportation vehicles is relevant to service quality and energy consumption, benchmarks for such comfort that reflect the thermal adaptations of passengers are currently lacking. This study reports a field experiment involving simultaneous physical measurements and a questionnaire survey, collecting data from 2,129 respondents, that evaluated thermal comfort in short- and long-haul buses and trains. Experimental results indicate that high air temperature, strong solar radiation, and low air movement explain why passengers feel thermally uncomfortable. The overall insulation of clothing worn by passengers and thermal adaptive behaviour in vehicles differ from those in their living and working spaces. Passengers in short-haul vehicles habitually adjust the air outlets to increase thermal comfort, while passengers in long-haul vehicles prefer to draw the drapes to reduce discomfort from extended exposure to solar radiation. The neutral temperatures for short- and long-haul vehicles are 26.2 degrees C and 27.4 degrees C, while the comfort zones are 22.4-28.9 degrees C and 22.4-30.1 degrees C, respectively. The results of this study provide a valuable reference for practitioners involved in determining the adequate control and management of in-vehicle thermal environments, as well as facilitating design of buses and trains, ultimately contributing to efforts to achieve a balance between the thermal comfort satisfaction of passengers and energy conserving measures for air-conditioning in mass transportation vehicles.


Subject(s)
Acclimatization/physiology , Air Conditioning , Motor Vehicles , Thermosensing/physiology , Air , Air Conditioning/standards , Air Movements , Clothing , Conservation of Energy Resources , Consumer Behavior , Humans , Humidity , Motor Vehicles/classification , Surveys and Questionnaires , Taiwan , Temperature , Time Factors
4.
Int J Biometeorol ; 53(2): 189-200, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19132409

ABSTRACT

Divergence in the acceptability to people in different regions of naturally ventilated thermal environments raises a concern over the extent to which the ASHRAE Standard 55 may be applied as a universal criterion of thermal comfort. In this study, the ASHRAE 55 adaptive model of thermal comfort was investigated for its applicability to a hot and humid climate through a long-term field survey performed in central Taiwan among local students attending 14 elementary and high schools during September to January. Adaptive behaviors, thermal neutrality, and thermal comfort zones are explored. A probit analysis of thermal acceptability responses from students was performed in place of the conventional linear regression of thermal sensation votes against operative temperature to investigate the limits of comfort zones for 90% and 80% acceptability; the corresponding comfort zones were found to occur at 20.1-28.4 degrees C and 17.6-30.0 degrees C, respectively. In comparison with the yearly comfort zones recommended by the adaptive model for naturally ventilated spaces in the ASHRAE Standard 55, those observed in this study differ in the lower limit for 80% acceptability, with the observed level being 1.7 degrees C lower than the ASHRAE-recommended value. These findings can be generalized to the population of school children, thus providing information that can supplement ASHRAE Standard 55 in evaluating the thermal performance of naturally ventilated school buildings, particularly in hot-humid areas such as Taiwan.


Subject(s)
Ventilation/methods , Acclimatization/physiology , Adolescent , Air Movements , Child , Environment, Controlled , Female , Hot Temperature/adverse effects , Humans , Humidity/adverse effects , Male , Models, Biological , Schools , Sensation , Surveys and Questionnaires , Taiwan , Ventilation/standards
5.
Sci Total Environ ; 653: 1262-1271, 2019 Feb 25.
Article in English | MEDLINE | ID: mdl-30759566

ABSTRACT

As urbanization expands and diversifies, weather data produced by a single weather station in a suburb are no longer adequate to represent and reflect microclimatic changes of a city. This study selected 34 automatic weather stations in Tainan City, Taiwan, to conduct temperature and humidity measurements over a period of one year. Based on those observed weather data and urban environment parameters obtained from a geographic information system, as well as morphing approach, this study constructed a method of generating hourly local weather data for urban areas while accounting for urban heat island (UHI) effect in summer. Meanwhile, we discussed the relativities of the urban form and its structure against the variations of local hourly temperature and relative humidity under six buffer scenarios. Error analysis results revealed that minimal prediction errors can be obtained using the buffer scenario involving a 1000 × 1000 m2 four-layer buffer with inner and outer layers and upwind and downwind areas. Finally, using the hourly weather data produced for Tainan City, we calculated the long-term cumulative UHI intensity (UHII) and urban bioclimatic indexes (i.e., thermal stress, use of natural ventilation, and cooling degree day) and investigated how urban form and structure are related to UHII, thermal stress, use of natural ventilation, and cooling degree day. The results can inform urban policy making.

SELECTION OF CITATIONS
SEARCH DETAIL