Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 139
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Plant J ; 115(4): 1071-1083, 2023 08.
Article in English | MEDLINE | ID: mdl-37177878

ABSTRACT

The depletion of cellular zinc (Zn) adversely affects plant growth. Plants have adaptation mechanisms for Zn-deficient conditions, inhibiting growth through the action of transcription factors and metal transporters. We previously identified three defensin-like (DEFL) proteins (DEFL203, DEFL206 and DEFL208) that were induced in Arabidopsis thaliana roots under Zn-depleted conditions. DEFLs are small cysteine-rich peptides involved in defense responses, development and excess metal stress in plants. However, the functions of DEFLs in the Zn-deficiency response are largely unknown. Here, phylogenetic tree analysis revealed that seven DEFLs (DEFL202-DEFL208) were categorized into one subgroup. Among the seven DEFLs, the transcripts of five (not DEFL204 and DEFL205) were upregulated by Zn deficiency, consistent with the presence of cis-elements for basic-region leucine-zipper 19 (bZIP19) or bZIP23 in their promoter regions. Microscopic observation of GFP-tagged DEFL203 showed that DEFL203-sGFP was localized to the apoplast and plasma membrane. Whereas a single mutation of the DEFL202 or DEFL203 genes only slightly affected root growth, defl202 defl203 double mutants showed enhanced root growth under all growth conditions. We also showed that the size of the root meristem was increased in the double mutants compared with the wild type. Our results suggest that DEFL202 and DEFL203 are redundantly involved in the inhibition of root growth under Zn-deficient conditions through a reduction in root meristem length and cell number.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Phylogeny , Zinc/metabolism , Metals/metabolism , Plants/metabolism , Defensins/genetics , Defensins/metabolism , Gene Expression Regulation, Plant , Plant Roots/genetics , Plant Roots/metabolism
2.
Article in English | MEDLINE | ID: mdl-39013611

ABSTRACT

SO2/H2SO3 can damage plants. However, its toxic mechanism has still been controversial. Two models have been proposed, cytosolic acidification model and cellular oxidation model. Here, we assessed the toxic mechanism of H2SO3 in three cell types of Arabidopsis thaliana, mesophyll cells, guard cells and petal cells. The sensitivity of guard cells of CHLORIDE CHANNEL a (CLCa)-knockout mutants to H2SO3 was significantly lower than those of wildtype plants. Expression of other CLC genes in mesophyll cells and petal cells were different from guard cells. Treatment with antioxidant, disodium 4,5-dihydroxy-1,3-benzenedisulfonate (tiron), increased the median lethal concentration (LC50) of H2SO3 in guard cells indicating the involvement of cellular oxidation, while the effect was negligible in mesophyll cells and petal cells. These results indicate that there are two toxic mechanisms of SO2 to Arabidopsis cells: cytosolic acidification and cellular oxidation, and the toxic mechanism may vary among cell types.

3.
Plant J ; 110(6): 1619-1635, 2022 06.
Article in English | MEDLINE | ID: mdl-35388561

ABSTRACT

Increasing the vegetative growth period of crops can increase biomass and grain yield. In rice (Oryza sativa), the concentration of trans -zeatin, an active cytokinin, was high in the leaves during vegetative growth and decreased rapidly upon induction of florigen expression, suggesting that this hormone is involved in the regulation of the vegetative phase. To elucidate whether exogenous cytokinin application influences the length of the vegetative phase, we applied 6-benzylaminopurine (BAP) to rice plants at various developmental stages. Our treatment delayed flowering time by 8-9 days when compared with mock-treated rice plants, but only at the transition stage when the flowering signals were produced. Our observations also showed that flowering in the paddy field is delayed by thidiazuron, a stable chemical that mimics the effects of cytokinin. The transcript levels of florigen genes Heading date 3a (Hd3a) and Rice Flowering locus T1 (RFT1) were significantly reduced by the treatment, but the expression of Early heading date 1 (Ehd1), a gene found directly upstream of the florigen genes, was not altered. In maize (Zea mays), similarly, BAP treatment increased the vegetative phage by inhibiting the expression of ZCN8, an ortholog of Hd3a. We showed that cytokinin treatment induced the expression of two type-A response regulators (OsRR1 and OsRR2) which interacted with Ehd1, a type-B response regulator. We also observed that cytokinin did not affect flowering time in ehd1 knockout mutants. Our study indicates that cytokinin application increases the duration of the vegetative phase by delaying the expression of florigen genes in rice and maize by inhibiting Ehd1.


Subject(s)
Oryza , Cytokinins/metabolism , Florigen/metabolism , Flowers , Gene Expression Regulation, Plant , Oryza/metabolism , Photoperiod , Plant Proteins/genetics , Plant Proteins/metabolism , Zea mays/genetics , Zea mays/metabolism
4.
Biosci Biotechnol Biochem ; 87(11): 1323-1331, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37553179

ABSTRACT

Dihydroxyacetone (DHA) occurs in wide-ranging organisms, including plants, and can undergo spontaneous conversion to methylglyoxal (MG). While the toxicity of MG to plants is well-known, the toxicity of DHA to plants remains to be elucidated. We investigated the effects of DHA and MG on Arabidopsis. Exogenous DHA at up to 10 mm did not affect the radicle emergence, the expansion of green cotyledons, the seedling growth, or the activity of glyoxalase II, while DHA at 10 mm inhibited the root elongation and increased the activity of glyoxalase I. Exogenous MG at 1.0 mm inhibited these physiological responses and increased both activities. Dihydroxyacetone at 10 mm increased the MG content in the roots. These results indicate that DHA is not so toxic as MG in Arabidopsis seeds and seedlings and suggest that the toxic effect of DHA at high concentrations is attributed to MG accumulation by the conversion to MG.


Subject(s)
Arabidopsis , Lactoylglutathione Lyase , Dihydroxyacetone/pharmacology , Pyruvaldehyde/pharmacology , Anthocyanins/pharmacology
5.
New Phytol ; 233(2): 655-669, 2022 01.
Article in English | MEDLINE | ID: mdl-34725822

ABSTRACT

To acclimate to waterlogged conditions, wetland plants form a barrier to radial oxygen loss (ROL) that can enhance oxygen transport to the root apex. We hypothesized that one or more hormones are involved in the induction of the barrier and searched for such hormones in rice. We previously identified 98 genes that were tissue-specifically upregulated during ROL barrier formation in rice. The RiceXPro database showed that most of these genes were highly enhanced by exogenous abscisic acid (ABA). We then examined the effect of ABA on ROL barrier formation by using an ABA biosynthesis inhibitor (fluridone, FLU), by applying exogenous ABA and by examining a mutant with a defective ABA biosynthesis gene (osaba1). FLU suppressed barrier formation in a stagnant solution that mimics waterlogged soil. Under aerobic conditions, rice does not naturally form a barrier, but 24 h of ABA treatment induced barrier formation. osaba1 did not form a barrier under stagnant conditions, but the application of ABA rescued the barrier. In parallel with ROL barrier formation, suberin lamellae formed in the exodermis. These findings strongly suggest that ABA is an inducer of suberin lamellae formation in the exodermis, resulting in an ROL barrier formation in rice.


Subject(s)
Oryza , Abscisic Acid/pharmacology , Lignin , Oryza/genetics , Oxygen , Plant Roots/genetics
6.
Plant Cell Environ ; 45(8): 2337-2350, 2022 08.
Article in English | MEDLINE | ID: mdl-35672880

ABSTRACT

Guard-cell-type aluminium-activated malate transporters (ALMTs) are involved in stomatal closure by exporting anions from guard cells. However, their physiological and electrophysiological functions are yet to be explored. Here, we analysed the physiological and electrophysiological properties of the ALMT channels in Arabidopsis and tomato (Solanum lycopersicum). SlALMT11 was specifically expressed in tomato guard cells. External malate-induced stomatal closure was impaired in ALMT-suppressed lines of tomato and Arabidopsis, although abscisic acid did not influence the stomatal response in SlALMT11-knock-down tomato lines. Electrophysiological analyses in Xenopus oocytes showed that SlALMT11 and AtALMT12/QUAC1 exhibited characteristic bell-shaped current-voltage patterns dependent on extracellular malate, fumarate, and citrate. Both ALMTs could transport malate, fumarate, and succinate, but not citrate, suggesting that the guard-cell-type ALMTs are dicarboxylic anion channels activated by extracellular organic acids. The truncation of acidic amino acids, Asp or Glu, from the C-terminal end of SlALMT11 or AtALMT12/QUAC1 led to the disappearance of the bell-shaped current-voltage patterns. Our findings establish that malate-activated stomatal closure is mediated by guard-cell-type ALMT channels that require an acidic amino acid in the C-terminus as a candidate voltage sensor in both tomato and Arabidopsis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Organic Anion Transporters , Solanum lycopersicum , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Aluminum/metabolism , Aluminum/toxicity , Anions/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Fumarates/metabolism , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Malates/metabolism , Membrane Transport Proteins/metabolism , Organic Anion Transporters/genetics , Organic Anion Transporters/metabolism , Plant Stomata/physiology
7.
Plant J ; 104(4): 995-1008, 2020 11.
Article in English | MEDLINE | ID: mdl-32891065

ABSTRACT

Rhizoctonia solani is a soil-borne necrotrophic fungus that causes sheath blight in grasses. The basal resistance of compatible interactions between R. solani and rice is known to be modulated by some WRKY transcription factors (TFs). However, genes and defense responses involved in incompatible interaction with R. solani remain unexplored, because no such interactions are known in any host plants. Recently, we demonstrated that Bd3-1, an accession of the model grass Brachypodium distachyon, is resistant to R. solani and, upon inoculation with the fungus, undergoes rapid induction of genes responsive to the phytohormone salicylic acid (SA) that encode the WRKY TFs BdWRKY38 and BdWRKY44. Here, we show that endogenous SA and these WRKY TFs positively regulate this accession-specific R. solani resistance. In contrast to a susceptible accession (Bd21), the infection process in the resistant accessions Bd3-1 and Tek-3 was suppressed at early stages before the development of fungal biomass and infection machinery. A comparative transcriptome analysis during pathogen infection revealed that putative WRKY-dependent defense genes were induced faster in the resistant accessions than in Bd21. A gene regulatory network (GRN) analysis based on the transcriptome dataset demonstrated that BdWRKY38 was a GRN hub connected to many target genes specifically in resistant accessions, whereas BdWRKY44 was shared in the GRNs of all three accessions. Moreover, overexpression of BdWRKY38 increased R. solani resistance in Bd21. Our findings demonstrate that these resistant accessions can activate an incompatible host response to R. solani, and BdWRKY38 regulates this response by mediating SA signaling.


Subject(s)
Brachypodium/genetics , Disease Resistance/genetics , Plant Diseases/immunology , Rhizoctonia/physiology , Transcription Factors/metabolism , Transcriptome , Brachypodium/microbiology , Gene Expression Regulation, Plant , Host-Pathogen Interactions , Plant Diseases/microbiology , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Salicylic Acid/metabolism , Signal Transduction , Transcription Factors/genetics
8.
Plant Cell Physiol ; 62(11): 1728-1744, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34410430

ABSTRACT

Plastids are involved in phytohormone metabolism as well as photosynthesis. However, the mechanism by which plastid retrograde signals and phytohormones cooperatively regulate plastid biogenesis remains elusive. Here, we investigated the effects of an inhibitor and a mutation that generate biogenic plastid signals on phytohormones and vice versa. Inhibition of plastid biogenesis by norflurazon (NF) treatment and the plastid protein import2 (ppi2) mutation caused a decrease in salicylic acid (SA) and jasmonic acid (JA). This effect can be attributed in part to the altered expression of genes involved in the biosynthesis and the metabolism of SA and JA. However, SA-dependent induction of the PATHOGENESIS-RELATED1 gene was virtually unaffected in NF-treated plants and the ppi2 mutant. Instead, the level of chlorophyll in these plants was partially restored by the exogenous application of SA. Consistent with this observation, the levels of some photosynthesis-associated proteins increased in the ppi2 and NF-treated plants in response to SA treatment. This regulation in true leaves seems to occur at the posttranscriptional level since SA treatment did not induce the expression of photosynthesis-associated genes. In salicylic acid induction deficient 2 and lesions simulating disease resistance 1 mutants, endogenous SA regulates the accumulation of photosynthesis-associated proteins through transcriptional and posttranscriptional mechanisms. These data indicate that SA acts antagonistically to the inhibition of plastid biogenesis by promoting the accumulation of photosynthesis-associated proteins in Arabidopsis, suggesting a possible link between SA and biogenic plastid signaling.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Cyclopentanes/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Oxylipins/metabolism , Plant Growth Regulators/metabolism , Salicylic Acid/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Herbicides/adverse effects , Intercellular Signaling Peptides and Proteins/metabolism , Photosynthesis , Plastids/metabolism , Pyridazines/adverse effects , Signal Transduction
9.
J Plant Res ; 134(5): 1139-1148, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34142247

ABSTRACT

It is known that rice roots take up cadmium (Cd) via the symplastic route mediated by membrane-bound mineral transporters. Here we provide evidence that apoplastic bypass flow is another Cd uptake route in rice. High concentrations of Cd rendered apoplastic bypass flow rate increased in rice seedlings. These concentrations of Cd compromised membrane integrity in the root meristem and transition zone. Polyethleneglycol and proline inhibited the Cd-induced apoplastic bypass flow and Cd transfer to the shoots. Loss-of-function mutant of the Cd uptake transporter, nramp5, showed Cd transport to the shoot comparable to the wild type. At a low Cd concentration, increased apoplastic bypass flow rate by NaCl stress resulted in an elevation of Cd transport to shoots both in the wildtype and nramp5. These observations indicate that apoplastic bypass flow in roots carries Cd transport leading to xylem loading of Cd in addition to the symplastic pathway mediated by mineral transporters under stressed conditions.


Subject(s)
Cadmium , Oryza , Biological Transport , Oryza/genetics , Plant Roots , Seedlings
10.
Plant J ; 100(3): 536-548, 2019 11.
Article in English | MEDLINE | ID: mdl-31306517

ABSTRACT

In auxin-stimulated roots, production of reactive oxygen species (ROS) via the hormone-induced activation of respiratory burst oxidase homologous NADPH oxidases facilitates lateral root (LR) formation. In this study, in order to verify that ROS can modulate auxin signaling, we examined the involvement of the lipid peroxide-derived agents known as reactive carbonyl species (RCS) in LR formation. When auxin was added to Arabidopsis thaliana roots, the levels of RCS, for example acrolein, 4-hydroxynonenal and crotonaldehyde, were increased prior to LR formation. Addition of the carbonyl scavenger carnosine suppressed auxin-induced LR formation. Addition of RCS to the roots induced the expression of the auxin-responsive DR5 promoter and the TIR1, IAA14, ARF7, LBD16 and PUCHI genes and facilitated LR formation without increasing the endogenous auxin level. DR5 and LBD16 were activated in the LR primordia. The auxin signaling-deficient mutants arf7 arf19 and slr-1 did not respond - and tir1 afb2 appeared to show a poor response - to RCS. When given to the roots RCS promoted the disappearance of the AXR3NT-GUS fusion protein, i.e. the degradation of the auxin/indole-3-acetic acid protein, as did auxin. These results indicate that the auxin-induced production of ROS and their downstream products RCS modulate the auxin signaling pathway in a feed-forward manner. RCS are key agents that connect the ROS signaling and the auxin signaling pathways.


Subject(s)
Arabidopsis/physiology , Free Radicals/metabolism , Indoleacetic Acids/metabolism , Plant Growth Regulators/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Genes, Reporter , Lipid Peroxides/metabolism , Oxylipins/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/physiology , Promoter Regions, Genetic/genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism
11.
Plant Cell Physiol ; 61(10): 1711-1723, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32678906

ABSTRACT

Plant phenotypes caused by mineral deficiencies differ depending on growth conditions. We recently reported that the growth of Arabidopsis thaliana was severely inhibited on MGRL-based zinc (Zn)-deficient medium but not on Murashige-Skoog-based Zn-deficient medium. Here, we explored the underlying reason for the phenotypic differences in Arabidopsis grown on the different media. The root growth and chlorophyll contents reduced by Zn deficiency were rescued by the addition of extra manganese (Mn) during short-term growth (10 or 14 d). However, this treatment did not affect the growth recovery after long-term growth (38 d). To investigate the reason for plant recovery from Zn deficiency, we performed the RNA-seq analysis of the roots grown on the Zn-basal medium and the Zn-depleted medium with/without additional Mn. Principal component analysis of the RNA-seq data showed that the gene expression patterns of plants on the Zn-basal medium were similar to those on the Zn-depleted medium with Mn, whereas those on the Zn-depleted medium without Mn were different from the others. The expression of several transcription factors and reactive oxygen species (ROS)-related genes was upregulated in only plants on the Zn-depleted medium without Mn. Consistent with the gene expression data, ROS accumulation in the roots grown on this medium was higher than those grown in other conditions. These results suggest that plants accumulate ROS and reduce their biomass under undesirable growth conditions, such as Zn depletion. Taken together, this study shows that the addition of extra Mn to the Zn-depleted medium induces transcriptional changes in ROS-related genes, thereby alleviating short-term growth inhibition due to Zn deficiency.


Subject(s)
Manganese/pharmacology , Seedlings/metabolism , Zinc/deficiency , Arabidopsis/drug effects , Arabidopsis/growth & development , Arabidopsis/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Reactive Oxygen Species/metabolism , Seedlings/drug effects , Seedlings/growth & development , Transcriptome/drug effects , Zinc/metabolism
12.
J Exp Bot ; 71(16): 4778-4796, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32374848

ABSTRACT

Peel degreening is an important aspect of fruit ripening in many citrus fruit, and previous studies have shown that it can be advanced by ethylene treatment or by low-temperature storage. However, the important regulators and pathways involved in natural peel degreening remain largely unknown. To determine how natural peel degreening is regulated in lemon fruit (Citrus limon), we studied transcriptome and physiochemical changes in the flavedo in response to ethylene treatment and low temperatures. Treatment with ethylene induced rapid peel degreening, which was strongly inhibited by the ethylene antagonist, 1-methylcyclopropene (1-MCP). Compared with 25 ºC, moderately low storage temperatures of 5-20 °C also triggered peel degreening. Surprisingly, repeated 1-MCP treatments failed to inhibit the peel degreening induced by low temperature. Transcriptome analysis revealed that low temperature and ethylene independently regulated genes associated with chlorophyll degradation, carotenoid metabolism, photosystem proteins, phytohormone biosynthesis and signalling, and transcription factors. Peel degreening of fruit on trees occurred in association with drops in ambient temperature, and it coincided with the differential expression of low temperature-regulated genes. In contrast, genes that were uniquely regulated by ethylene showed no significant expression changes during on-tree peel degreening. Based on these findings, we hypothesize that low temperature plays a prominent role in regulating natural peel degreening independently of ethylene in citrus fruit.


Subject(s)
Citrus , Fruit , Citrus/genetics , Citrus/metabolism , Ethylenes , Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Temperature
13.
Biosci Biotechnol Biochem ; 84(7): 1418-1426, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32200704

ABSTRACT

Reactive oxygen species and nitric oxide (NO•) concomitantly play essential roles in guard cell signaling. Studies using catalase mutants have revealed that the inducible and constitutive elevations of intracellular hydrogen peroxide (H2O2) have different roles: only the inducible H2O2 production transduces the abscisic acid (ABA) signal leading stomatal closure. However, the involvement of inducible or constitutive NO• productions, if exists, in this process remains unknown. We studied H2O2 and NO• mobilization in guard cells of catalase mutants. Constitutive H2O2 level was higher in the mutants than that in wild type, but constitutive NO• level was not different among lines. Induced NO• and H2O2 levels elicited by ABA showed a high correlation with each other in all lines. Furthermore, NO• levels increased by exogenous H2O2 also showed a high correlation with stomatal aperture size. Our results demonstrate that ABA-induced intracellular H2O2 accumulation triggers NO• production leading stomatal closure. ABBREVIATIONS: ABA: abscisic acid; CAT: catalase; cGMP: cyclic guanosine monophosphate; DAF-2DA: 4,5-diaminofluorescein-2 diacetate; H2DCF-DA: 2',7'-dichlorodihydrofluorescein diacetate; MeJA: methyljasmonate; NOS: nitric oxide synthetase; NR: nitrate reductase; POX: peroxidase; ROS: reactive oxygen species; SNAP: S-nitroso-N-acetyl-DL-penicillamine; SNP: sodium nitroprusside; NOX: NADP(H) oxidase.


Subject(s)
Abscisic Acid/pharmacology , Hydrogen Peroxide/pharmacology , Intracellular Space/metabolism , Nitric Oxide/metabolism , Plant Stomata/drug effects , Plant Stomata/metabolism , Signal Transduction/genetics , Abscisic Acid/metabolism , Arabidopsis , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Catalase/genetics , Catalase/metabolism , Cyclic GMP/metabolism , Hydrogen Peroxide/metabolism , Nitroprusside/pharmacology , Plants, Genetically Modified
14.
J Plant Res ; 133(1): 73-94, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31853665

ABSTRACT

Black pepper (Piper nigrum L.) is one of the most popular and oldest spices in the world with culinary uses and various pharmacological properties. In order to satisfy the growing worldwide demand for black pepper, improved productivity of pepper is highly desirable. A primary constraint in black pepper production is the non-synchronous nature of flower development and non-uniform fruit ripening within a spike. The uneven ripening of pepper berries results in a high labour requirement for selective harvesting contributes to low productivity and affects the quality of the pepper products. In Malaysia, there are a few recommended varieties for black pepper planting, each having some limitations in addition to the useful characteristics. Therefore, a comparative study of different black pepper varieties will provide a better understanding of the mechanisms regulates fruit development and ripening. Plant hormones are known to influence the fruit development process and their roles in black pepper flower and fruit development were inferred based on the probe-based gene expression analysis and the quantification of the multiple plant hormones using high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS). In this study, jasmonic acid and salicylic acid were found to play roles in flowering and fruit setting, whereas auxin, gibberellin and cytokinins are important for fruit growth. Abscisic acid has positive role in fruit maturation and ripening in the development process. Distinct pattern of plant hormones related gene expression profiles with the hormones accumulation profiles suggested a complex network of regulation is involved in the signaling process and crosstalk between plant hormones was another layer of regulation in the black pepper fruit development mechanisms. The current study provides clues to help in elucidating the timing of the action of each specific plant hormone during fruit development and ripening which could be applied to enhance our ability to control the ripening process, leading to improving procedures for the production and post-harvest handling of pepper fruits.


Subject(s)
Piper nigrum , Fruit , Gene Expression Regulation, Plant , Malaysia , Plant Growth Regulators , Tandem Mass Spectrometry
15.
Plant Cell Environ ; 42(2): 437-447, 2019 02.
Article in English | MEDLINE | ID: mdl-30014483

ABSTRACT

Plants closing stomata in the presence of harmful gases is believed to be a stress avoidance mechanism. SO2 , one of the major airborne pollutants, has long been reported to induce stomatal closure, yet the mechanism remains unknown. Little is known about the stomatal response to airborne pollutants besides O3 . SLOW ANION CHANNEL-ASSOCIATED 1 (SLAC1) and OPEN STOMATA 1 (OST1) were identified as genes mediating O3 -induced closure. SLAC1 and OST1 are also known to mediate stomatal closure in response to CO2 , together with RESPIRATORY BURST OXIDASE HOMOLOGs (RBOHs). The overlaying roles of these genes in response to O3 and CO2 suggested that plants share their molecular regulators for airborne stimuli. Here, we investigated and compared stomatal closure event induced by a wide concentration range of SO2 in Arabidopsis through molecular genetic approaches. O3 - and CO2 -insensitive stomata mutants did not show significant differences from the wild type in stomatal sensitivity, guard cell viability, and chlorophyll content revealing that SO2 -induced closure is not regulated by the same molecular mechanisms as for O3 and CO2 . Nonapoptotic cell death is shown as the reason for SO2 -induced closure, which proposed the closure as a physicochemical process resulted from SO2 distress, instead of a biological protection mechanism.


Subject(s)
Carbon Dioxide/pharmacology , Cell Death/drug effects , Ozone/pharmacology , Plant Stomata/drug effects , Sulfur Dioxide/pharmacology , Arabidopsis/cytology , Arabidopsis/drug effects , Arabidopsis/physiology , Arabidopsis Proteins/physiology , Chlorophyll/metabolism , Membrane Proteins/physiology , Plant Stomata/cytology , Protein Kinases/physiology , Sulfites/pharmacology
16.
Breed Sci ; 69(4): 601-610, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31988624

ABSTRACT

This study examined contents of nine plant hormones in developing seeds of field-grown wheat varieties (Triticum aestivum L.) with different seed dormancy using liquid chromatography-mass spectrometry. The varieties showed marked diversity in germination indices at 15°C and 20°C. Contents of the respective hormones in seeds showed a characteristic pattern during seed maturation from 30-day post anthesis to 60-day post anthesis. Principal component analysis and hierarchical clustering analysis revealed that plant hormone profiles were not correlated with dormancy levels, indicating that hormone contents were not associated with preharvest sprouting (PHS) susceptibility. Indole acetic acid (IAA) contents of mature seeds showed positive correlation with the germination index, but no other hormone. Response of embryo-half seeds to exogenous abscisic acid (ABA) indicates that ABA sensitivity is correlated with whole-seed germinability, which can be explained in part by genotypes of MOTHER OF FT AND TFL (MFT) allele modulating ABA signaling of wheat seeds. These results demonstrate that variation in wheat seed dormancy is attributable to ABA sensitivity of mature seeds, but not to ABA contents in developing seeds.

17.
BMC Plant Biol ; 18(1): 287, 2018 Nov 20.
Article in English | MEDLINE | ID: mdl-30458716

ABSTRACT

BACKGROUND: The ureides allantoin and allantoate are major metabolic intermediates of purine catabolism with high nitrogen-to-carbon ratios. Ureides play a key role in nitrogen utilization in ureide-type legumes, but their effects on growth and development in non-legume plants are poorly understood. Here, we examined the effects of knocking out genes encoding ureide-degrading enzymes, allantoinase (ALN) and allantoate amidohydrolase (AAH), on the vegetative-to-reproductive transition and subsequent growth of Arabidopsis plants. RESULTS: The ureide-degradation mutants (aln and aah) showed symptoms similar to those of nitrogen deficiency: early flowering, reduced size at maturity, and decreased fertility. Consistent with these phenotypes, carbon-to-nitrogen ratios and nitrogen-use efficiencies were significantly decreased in ureide-degradation mutants; however, adding nitrogen to irrigation water did not alleviate the reduced growth of these mutants. In addition to nitrogen status, levels of indole-3-acetic acid and gibberellin in five-week-old plants were also affected by the aln mutations. To test the possibility that ureides are remobilized from source to sink organs, we measured ureide levels in various organs. In wild-type plants, allantoate accumulated predominantly in inflorescence stems and siliques; this accumulation was augmented by disruption of its catabolism. Mutants lacking ureide transporters, ureide permeases 1 and 2 (UPS1 and UPS2), exhibited phenotypes similar to those of the ureide-degradation mutants, but had decreased allantoate levels in the reproductive organs. Transcript analysis in wild-type plants suggested that genes involved in allantoate synthesis and ureide transport were coordinately upregulated in senescing leaves. CONCLUSIONS: This study demonstrates that ureide degradation plays an important role in supporting healthy growth and development in non-legume Arabidopsis during and after transition from vegetative to reproductive stages.


Subject(s)
Allantoin/metabolism , Arabidopsis/metabolism , Amidohydrolases/genetics , Amidohydrolases/metabolism , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Mutation , Nitrogen/metabolism , Ureohydrolases/genetics , Ureohydrolases/metabolism
18.
New Phytol ; 217(2): 771-783, 2018 01.
Article in English | MEDLINE | ID: mdl-29048113

ABSTRACT

Rhizoctonia solani is a soil-borne fungus causing sheath blight. In consistent with its necrotrophic life style, no rice cultivars fully resistant to R. solani are known, and agrochemical plant defense activators used for rice blast, which upregulate a phytohormonal salicylic acid (SA)-dependent pathway, are ineffective towards this pathogen. As a result of the unavailability of genetics, the infection process of R. solani remains unclear. We used the model monocotyledonous plants Brachypodium distachyon and rice, and evaluated the effects of phytohormone-induced resistance to R. solani by pharmacological, genetic and microscopic approaches to understand fungal pathogenicity. Pretreatment with SA, but not with plant defense activators used in agriculture, can unexpectedly induce sheath blight resistance in plants. SA treatment inhibits the advancement of R. solani to the point in the infection process in which fungal biomass shows remarkable expansion and specific infection machinery is developed. The involvement of SA in R. solani resistance is demonstrated by SA-deficient NahG transgenic rice and the sheath blight-resistant B. distachyon accessions, Bd3-1 and Gaz-4, which activate SA-dependent signaling on inoculation. Our findings suggest a hemi-biotrophic nature of R. solani, which can be targeted by SA-dependent plant immunity. Furthermore, B. distachyon provides a genetic resource that can confer disease resistance against R. solani to plants.


Subject(s)
Brachypodium/microbiology , Disease Resistance/drug effects , Oryza/microbiology , Plant Diseases/microbiology , Plant Immunity/drug effects , Rhizoctonia/physiology , Salicylic Acid/pharmacology , Brachypodium/drug effects , Brachypodium/genetics , Brachypodium/growth & development , Cell Wall/drug effects , Cell Wall/genetics , Disease Resistance/genetics , Ecotype , Gene Expression Regulation, Plant/drug effects , Oryza/drug effects , Plant Diseases/genetics , Plant Growth Regulators/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rhizoctonia/drug effects , Rhizoctonia/isolation & purification , Transcriptome/drug effects , Transcriptome/genetics
19.
J Plant Res ; 131(1): 165-178, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28785824

ABSTRACT

Circumnutation is a plant growth movement in which the tips of axial organs draw a circular orbit. Although it has been studied since the nineteenth century, its mechanism and significance are still unclear. Greened adzuki bean (Vigna angularis) epicotyls exhibited a clockwise circumnutation in the top view with a constant period of 60 min under continuous white light. The bending zone of circumnutation on the epicotyls was always located in the region 1-3 cm below the tip, and its basal end was almost identical to the apical end of the region where the epicotyl had completely elongated. Therefore, epidermal cells that construct the bending zone are constantly turning over with their elongation growth. Since exogenously applied auxin transport inhibitors and indole-3-acetic acid (IAA) impaired circumnutation without any effect on the elongation rate of epicotyls, we attempted to identify the distribution pattern of endogenous auxin. Taking advantage of its large size, we separated the bending zone of epicotyls into two halves along the longitudinal axis, either convex/concave pairs in the plane of curvature of circumnutation or pre-convex/pre-concave pairs perpendicular to the plane. By liquid chromatography-mass spectrometry, we found, for the first time, that IAA and gibberellin A1 were asymmetrically distributed in the pre-convex part in the region 1-2 cm below the tip. This region of epicotyl sections exhibited the highest responsiveness to exogenously applied hormones, and the latent period between the hormone application and the detection of a significant enhancement in elongation was 15 min. Our results suggest that circumnutation in adzuki bean epicotyls with a 60 min period is maintained by differential growth in the bending zone, which reflects the hormonal status 15 min before and which is shifting sequentially in a circumferential direction. Cortical microtubules do not seem to be involved in this regulation.


Subject(s)
Gibberellins/metabolism , Indoleacetic Acids/metabolism , Plant Growth Regulators/metabolism , Vigna/metabolism , Chromatography, Liquid , Mass Spectrometry , Seedlings/growth & development , Seedlings/metabolism , Vigna/growth & development
20.
Biosci Biotechnol Biochem ; 81(7): 1394-1400, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28387156

ABSTRACT

Salicylic acid (SA) induces stomatal closure sharing several components with abscisic acid (ABA) and methyl jasmonate (MeJA) signaling. We have previously shown that two guard cell-preferential mitogen-activated protein kinases (MAPKs), MPK9 and MPK12, positively regulate ABA signaling and MeJA signaling in Arabidopsis thaliana. In this study, we examined whether these two MAPKs are involved in SA-induced stomatal closure using genetic mutants and a pharmacological, MAPKK inhibitor. Salicylic acid induced stomatal closure in mpk9 and mpk12 single mutants but not in mpk9 mpk12 double mutants. The MAPKK inhibitor PD98059 inhibited SA-induced stomatal closure in wild-type plants. Salicylic acid induced extracellular reactive oxygen species (ROS) production, intracellular ROS accumulation, and cytosolic alkalization in the mpk9, mpk12, and mpk9 mpk12 mutants. Moreover, SA-activated S-type anion channels in guard cells of wild-type plants but not in guard cells of mpk9 mpk12 double mutants. These results imply that MPK9 and MPK12 are positive regulators of SA signaling in Arabidopsis guard cells.


Subject(s)
Arabidopsis/drug effects , Gene Expression Regulation, Plant , Plant Stomata/drug effects , Salicylic Acid/pharmacology , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Acetates/metabolism , Acetates/pharmacology , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cyclopentanes/metabolism , Cyclopentanes/pharmacology , Flavonoids/pharmacology , Hydrogen-Ion Concentration , Membrane Potentials/drug effects , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Mutation , Oxylipins/metabolism , Oxylipins/pharmacology , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Plant Stomata/genetics , Plant Stomata/metabolism , Protein Kinase Inhibitors/pharmacology , Reactive Oxygen Species/agonists , Reactive Oxygen Species/metabolism , Salicylic Acid/metabolism , Signal Transduction , Voltage-Dependent Anion Channels/genetics , Voltage-Dependent Anion Channels/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL