Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Sensors (Basel) ; 24(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39001101

ABSTRACT

With the development of technology, people's demand for pressure sensors with high sensitivity and a wide working range is increasing. An effective way to achieve this goal is simulating human skin. Herein, we propose a facile, low-cost, and reproducible method for preparing a skin-like multi-layer flexible pressure sensor (MFPS) device with high sensitivity (5.51 kPa-1 from 0 to 30 kPa) and wide working pressure range (0-200 kPa) by assembling carbonized fabrics and micro-wrinkle-structured Ag@rGO electrodes layer by layer. In addition, the highly imitated skin structure also provides the device with an extremely short response time (60/90 ms) and stable durability (over 3000 cycles). Importantly, we integrated multiple sensor devices into gloves to monitor finger movements and behaviors. In summary, the skin-like MFPS device has significant potential for real-time monitoring of human activities in the field of flexible wearable electronics and human-machine interaction.


Subject(s)
Cotton Fiber , Pressure , Wearable Electronic Devices , Humans , Cotton Fiber/analysis , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Electrodes , Skin , Textiles , Human Activities
2.
Polymers (Basel) ; 16(10)2024 May 12.
Article in English | MEDLINE | ID: mdl-38794570

ABSTRACT

Multifunctional wearable electronic sensors exhibit significant potential for applications in health management, motion tracking, intelligent healthcare, etc. In this study, we developed a novel assembly method for a polymeric silver nanowire (Ag NW)/transition metal carbide/nitride (MXene) @Loofah device using a facile solution dip-coating technique. During the pretreatment phase, the loofah was conditioned with polydiallyldimethylammonium chloride (PDAC), promoting the self-assembly of MXene layers and bolstering device stability. Then, the Ag NWs/MXene@Loofah was packaged with polyurethane to form a piezoresistive pressure sensor, which demonstrated superior pressure-sensing capabilities and was adept at registering movements of human joints and even subtle pulses. The design strategy presents a novel and rational approach to developing efficient pressure sensors.

3.
J Mater Chem B ; 11(31): 7478-7489, 2023 08 09.
Article in English | MEDLINE | ID: mdl-37455619

ABSTRACT

Due to the rapid development of multi-functional flexible wearable sensors, the development prospects of ionohydrogels with excellent mechanical properties and high sensitivity are necessary. In this work, a novel waterborne polyurethane (WPU) micelle with reactive groups on the surface has been prepared as a crosslinker and then reacted with polyacrylamide (PAM) to obtain a polyacrylamide-polyurethane/ionic liquid (PAM-WPU/IL) ionohydrogel. With the aid of ion-dipole interaction and crosslinks in the composite, the ionohydrogel exhibited ultrastretchability (up to 2927%), good mechanical resilience, and excellent self-adhesion strength (46.01 kPa). Furthermore, the ionohydrogel was used as a strain sensor for monitoring human movement with high strain sensitivity (gauge factor = 35). It is believed that this study provides a new idea for designing a multifunctional ionohydrogel for use in wearable electronics.


Subject(s)
Ionic Liquids , Micelles , Humans , Polyurethanes , Resin Cements , Electronics
SELECTION OF CITATIONS
SEARCH DETAIL