Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Clin Psychopharmacol ; 32(5): 622-9, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22926595

ABSTRACT

Pharmacogenetic tests and therapeutic drug monitoring may considerably improve the pharmacotherapy of depression. The aim of this study was to evaluate the relationship between the efficacy of mirtazapine (MIR) and the steady-state plasma concentrations of its enantiomers and metabolites in moderately to severely depressed patients, taking their pharmacogenetic status into account. Inpatients and outpatients (n = 45; mean age, 51 years; range, 19-79 years) with major depressive episode received MIR for 8 weeks (30 mg/d on days 1-14 and 30-45 mg/d on days 15-56). Mirtazapine treatment resulted in a significant improvement in mean Hamilton Depression Rating Scale total score at the end of the study (P < 0.0001). There was no evidence for a significant plasma concentration-clinical effectiveness relationship regarding any pharmacokinetic parameter. The enantiomers of MIR and its hydroxylated (OH-MIR) and demethylated (DMIR) metabolites in plasma samples on days 14 and 56 were influenced by sex and age. Nonsmokers (n = 28) had higher mean MIR plasma levels than smokers (n = 17): S(+)-enantiomer of MIR, 9.4 (SD, 3.9) versus 6.2 (SD, 5.5) ng/mL (P = 0.005); R(-)-enantiomer of MIR, 24.4 (SD, 6.5) versus 18.5 (SD, 4.1) ng/mL (P = 0.003). Only in nonsmokers, plasma levels of S(+)-enantiomer of MIR and metabolites depended on the CYP2D6 genotype. Therefore, high CYP1A2 activity seen in smokers seems to mask the influence of the CYP2D6 genotype. In patients presenting the CYP2B6 *6/*6 genotype (n = 8), S-OH-MIR concentrations were higher those in the other patients (n = 37). Although it is not known if S-OH-MIR is associated with the therapeutic effect of MIR, the reduction of the Hamilton scores was significantly (P = 0.016) more pronounced in the CYP2B6 *6/*6-genotyped patients at the end of the study. The role of CYP2B6 in the metabolism and effectiveness of MIR should be further investigated.


Subject(s)
Antidepressive Agents, Tricyclic/therapeutic use , Cytochrome P-450 CYP2D6/genetics , Depressive Disorder, Major/drug therapy , Mianserin/analogs & derivatives , Adult , Age Factors , Aged , Antidepressive Agents, Tricyclic/chemistry , Antidepressive Agents, Tricyclic/pharmacokinetics , Cytochrome P-450 CYP1A2/metabolism , Depressive Disorder, Major/physiopathology , Drug Monitoring/methods , Female , Genotype , Humans , Male , Mianserin/chemistry , Mianserin/pharmacokinetics , Mianserin/therapeutic use , Middle Aged , Mirtazapine , Pharmacogenetics , Psychiatric Status Rating Scales , Sex Factors , Smoking/metabolism , Stereoisomerism , Treatment Outcome , Young Adult
2.
Clin Pharmacokinet ; 48(1): 63-70, 2009.
Article in English | MEDLINE | ID: mdl-19071885

ABSTRACT

BACKGROUND AND OBJECTIVE: Mirtazapine is a tetracyclic antidepressant drug available as a racemic mixture of S(+)- and R(-)-mirtazapine. These enantiomers have different pharmacological properties, and both contribute to the clinical and adverse effects of the drug. Cytochrome P450 (CYP) 2D6 has been implicated in the metabolism of S(+)-mirtazapine. However, the effect of CYP2D6 on serum concentrations of the enantiomers of mirtazapine and its metabolites has not been assessed in patients on long-term treatment. The main objective of the study was to evaluate the effect of the CYP2D6 genotype on enantiomeric steady-state trough serum concentrations of mirtazapine and its metabolites N-desmethylmirtazapine and 8-hydroxymirtazapine. The effects of sex, age and smoking behaviour were also assessed. SUBJECTS AND METHODS: The study included 95 patients who had depression according to the Diagnostic and Statistical Manual of Mental Disorders-4th Edition and were treated for 4 weeks with a daily dose of mirtazapine 30 mg. The serum concentrations of the enantiomers of mirtazapine and its metabolites were analysed by liquid chromatography-mass spectrometry, and the subjects were genotyped for CYP2D6 alleles *3, *4, *5 and *6 and gene duplication. RESULTS: Three subjects (3%) were classified as ultrarapid metabolizers (UMs), 56 (59%) as homozygous extensive metabolizers (EMs), 30 (32%) as heterozygous EMs and 6 (6%) as poor metabolizers (PMs) of CYP2D6. The median trough serum concentrations of S(+)-mirtazapine were higher in PMs (59 nmol/L, p = 0.016) and in heterozygous EMs (39 nmol/L, p = 0.013) than in homozygous EMs (28 nmol/L). PMs and heterozygous EMs also had higher mirtazapine S(+)/R(-) ratios (0.4) than homozygous EMs (0.3, p = 0.015 and 0.004, respectively). The S(+)-N-desmethylmirtazapine concentration was higher in PMs (16 nmol/L) than in homozygous EMs (7 nmol/L, p = 0.043). There was an association between the CYP2D6 genotype and the ratio between S(+)-8-hydroxymirtazapine and S(+)-mirtazapine, with a significantly higher ratio in homozygous EMs than in heterozygous EMs (0.11 vs 0.05, p = 0.007). The influence of the CYP2D6 genotype on S(+)-mirtazapine, the mirtazapine S(+)/R(-) ratio and S(+)-N-desmethylmirtazapine remained significant after correction for the influence of sex, age and smoking. Smokers had significantly lower concentrations of S(+)-mirtazapine (23 vs 39 nmol/L, p = 0.026) and R(-)-N-desmethylmirtazapine (39 vs 51 nmol/L, p = 0.036) and a significantly lower mirtazapine S(+)/R(-) ratio (0.28 vs. 0.37, p = 0.014) than nonsmokers, and the effect of smoking remained significant after multivariate analysis. CONCLUSIONS: This study is the first to show the impact of the CYP2D6 genotype on steady-state serum concentrations of the enantiomers of mirtazapine and its metabolites. Our results also support the role of CYP1A2 in the metabolism of mirtazapine, with lower serum concentrations in smokers than in nonsmokers.


Subject(s)
Cytochrome P-450 CYP2D6/genetics , Mianserin/analogs & derivatives , Smoking/metabolism , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Cytochrome P-450 CYP1A2/physiology , Female , Genotype , Humans , Male , Mianserin/pharmacokinetics , Middle Aged , Mirtazapine , Prospective Studies , Stereoisomerism
3.
Neuropsychobiology ; 54(3): 179-81, 2006.
Article in English | MEDLINE | ID: mdl-17230030

ABSTRACT

Little information exists on the concentrations of recent antidepressants and their metabolites in cerebrospinal fluid (CSF). Using a stereoselective method, we measured plasma and CSF levels of mirtazapine (MIR), N-demethylmirtazapine and 8-OH-MIR in 3 depressed patients treated with racemic MIR (45 mg/day) for 4 weeks. S-(+)-MIR is considered to be the antidepressant enantiomer, but only R-(-)-MIR reached measurable concentrations in CSF. For R-(-)-MIR, the CSF/plasma ratio varied between 0.08 and 0.31. Further studies are needed to test the hypothesis that there are possible differences in the transport mechanisms of the enantiomers of MIR at the blood-CSF barrier.


Subject(s)
Antidepressive Agents, Tricyclic/cerebrospinal fluid , Depressive Disorder/cerebrospinal fluid , Mianserin/analogs & derivatives , Adult , Antidepressive Agents, Tricyclic/blood , Antidepressive Agents, Tricyclic/therapeutic use , Depressive Disorder/blood , Depressive Disorder/drug therapy , Drug Administration Schedule , Humans , Male , Mianserin/blood , Mianserin/cerebrospinal fluid , Mianserin/therapeutic use , Mirtazapine , Severity of Illness Index , Stereoisomerism
4.
Ther Drug Monit ; 26(4): 366-74, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15257065

ABSTRACT

Mirtazapine is an antidepressant that acts specifically on noradrenergic and sertonergic receptors. A LC-MS method was developed that allows the simultaneous analysis of the R-(-)- and S-(+)-enantiomers of mirtazapine (MIR), demethylmirtazapine (DMIR), and 8-hydroxymirtazapine (8-OH-MIR) in plasma of MIR-treated patients. The method involves a 3-step liquid-liquid extraction, an HPLC separation on a Chirobiotic V column, and MS detection in electrospray mode. The limit of quantification (LOQ) for all enantiomers was 0.5 ng/mL, and the intra- and interday CVs were within 3.3% to 11.7% (concentration ranges 5-50 ng/mL). A method is also presented for the quantitative analysis of glucuroconjugated MIR and 8-OH-MIR. S-(+)-8-OH-MIR is present in plasma mainly as its glucuronide. Preliminary data suggest that in all patients, except in those comedicated with CYP2D6 inhibitors such as fluoxetine and thioridazine, R-(-)-MIR concentrations were higher than those of S-(+)MIR. Moreover, fluvoxamine seems also to inhibit the metabolism of MIR. Therefore, this method seems to be suitable for the stereoselective assay of MIR and its metabolites in plasma of patients comedicated with MIR and other drugs for routine and research purposes.


Subject(s)
Antidepressive Agents, Tricyclic/blood , Mianserin/analogs & derivatives , Mianserin/blood , Adult , Aged , Aged, 80 and over , Antidepressive Agents, Tricyclic/chemistry , Chromatography, High Pressure Liquid , Chromatography, Liquid , Female , Humans , Male , Mass Spectrometry , Mianserin/analysis , Mianserin/chemistry , Middle Aged , Mirtazapine , Reproducibility of Results , Sensitivity and Specificity , Stereoisomerism
5.
J Clin Psychopharmacol ; 24(2): 214-9, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15206669

ABSTRACT

Clozapine (CLO), an atypical antipsychotic, depends mainly on cytochrome P450 1A2 (CYP1A2) for its metabolic clearance. Four patients treated with CLO, who were smokers, were nonresponders and had low plasma levels while receiving usual doses. Their plasma levels to dose ratios of CLO (median; range, 0.34; 0.22 to 0.40 ng x day/mL x mg) were significantly lower than ratios calculated from another study with 29 patients (0.75; 0.22 to 2.83 ng x day/mL x mg; P < 0.01). These patients were confirmed as being CYP1A2 ultrarapid metabolizers by the caffeine phenotyping test (median systemic caffeine plasma clearance; range, 3.85; 3.33 to 4.17 mL/min/kg) when compared with previous studies (0.3 to 3.33 mL/min/kg). The sequencing of the entire CYP1A2 gene from genomic DNA of these patients suggests that the -164C > A mutation (CYP1A2*1F) in intron 1, which confers a high inducibility of CYP1A2 in smokers, is the most likely explanation for their ultrarapid CYP1A2 activity. A marked (2 patients) or a moderate (2 patients) improvement of the clinical state of the patients occurred after the increase of CLO blood levels above the therapeutic threshold by the increase of CLO doses to very high values (ie, up to 1400 mg/d) or by the introduction of fluvoxamine, a potent CYP1A2 inhibitor, at low dosage (50 to 100 mg/d). Due to the high frequency of smokers among patients with schizophrenia and to the high frequency of the -164C > A polymorphism, CYP1A2 genotyping could have important clinical implications for the treatment of patients with CLO.


Subject(s)
Antipsychotic Agents/therapeutic use , Clozapine/therapeutic use , Cytochrome P-450 CYP1A2/genetics , Cytochrome P-450 CYP1A2/metabolism , Psychotic Disorders/drug therapy , Psychotic Disorders/genetics , Adult , Antipsychotic Agents/blood , Caffeine/metabolism , Chromatography, Gas , Clozapine/blood , DNA/genetics , Drug Resistance , Female , Genotype , Humans , Male , Mutation/genetics , Mutation/physiology , Phenotype , Smoking/metabolism , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL