Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(11)2022 03 15.
Article in English | MEDLINE | ID: mdl-35217532

ABSTRACT

The impacts of interferon (IFN) signaling on COVID-19 pathology are multiple, with both protective and harmful effects being documented. We report here a multiomics investigation of systemic IFN signaling in hospitalized COVID-19 patients, defining the multiomics biosignatures associated with varying levels of 12 different type I, II, and III IFNs. The antiviral transcriptional response in circulating immune cells is strongly associated with a specific subset of IFNs, most prominently IFNA2 and IFNG. In contrast, proteomics signatures indicative of endothelial damage and platelet activation associate with high levels of IFNB1 and IFNA6. Seroconversion and time since hospitalization associate with a significant decrease in a specific subset of IFNs. Additionally, differential IFN subtype production is linked to distinct constellations of circulating myeloid and lymphoid immune cell types. Each IFN has a unique metabolic signature, with IFNG being the most associated with activation of the kynurenine pathway. IFNs also show differential relationships with clinical markers of poor prognosis and disease severity. For example, whereas IFNG has the strongest association with C-reactive protein and other immune markers of poor prognosis, IFNB1 associates with increased neutrophil to lymphocyte ratio, a marker of late severe disease. Altogether, these results reveal specialized IFN action in COVID-19, with potential diagnostic and therapeutic implications.


Subject(s)
Blood/metabolism , COVID-19/immunology , Interferons/blood , Proteome , Transcriptome , COVID-19/blood , Case-Control Studies , Datasets as Topic , Humans , Inpatients
2.
Mol Carcinog ; 63(7): 1248-1259, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38558423

ABSTRACT

Epithelial ovarian cancers that are nonhomologous recombination deficient, as well as those that are recurrent and in a platinum-resistant state, have limited therapeutic options. The objectives of this study were to characterize the mechanism of action and investigate the therapeutic potential of a small molecule, VDX-111, against ovarian cancer. We examined the ability of VDX-111 to inhibit the growth of a panel of ovarian cancer cell lines, focusing on BRCA wild-type lines. We found that VDX-111 causes a dose-dependent loss of cell viability across ovarian cancer cell lines. Reverse phase protein array (RPPA) analysis was used to identify changes in cell signaling in response to VDX-111 treatment. An RPPA analysis performed on cells treated with VDX-111 detected changes in cell signaling related to autophagy and necroptosis. Immunoblots of OVCAR3 and SNU8 cells confirmed a dose-dependent increase in LC3A/B and RIPK1. Incucyte live cell imaging was used to measure cell proliferation and death in response to VDX-111 alone and with inhibitors of apoptosis, necroptosis, and autophagy. Annexin/PI assays suggested predominantly nonapoptotic cell death, while real-time kinetic imaging of cell growth indicated the necroptosis inhibitor, necrostatin-1, attenuates VDX-111-induced loss of cell viability, suggesting a necroptosis-dependent mechanism. Furthermore, VDX-111 inhibited tumor growth in patient-derived xenograft and syngeneic murine models. In conclusion, the cytotoxic effects of VDX-111 seen in vitro and in vivo appear to occur in a necroptosis-dependent manner and may promote an antitumor immune response.


Subject(s)
Cell Proliferation , Necroptosis , Ovarian Neoplasms , Xenograft Model Antitumor Assays , Humans , Female , Animals , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Necroptosis/drug effects , Mice , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Progression , Apoptosis/drug effects , Antineoplastic Agents/pharmacology , Autophagy/drug effects , Cell Survival/drug effects , Carcinoma, Ovarian Epithelial/drug therapy , Carcinoma, Ovarian Epithelial/pathology , Signal Transduction/drug effects , Imidazoles/pharmacology
3.
PLoS Comput Biol ; 19(9): e1011432, 2023 09.
Article in English | MEDLINE | ID: mdl-37733781

ABSTRACT

Multiplex imaging is a powerful tool to analyze the structural and functional states of cells in their morphological and pathological contexts. However, hypothesis testing with multiplex imaging data is a challenging task due to the extent and complexity of the information obtained. Various computational pipelines have been developed and validated to extract knowledge from specific imaging platforms. A common problem with customized pipelines is their reduced applicability across different imaging platforms: Every multiplex imaging technique exhibits platform-specific characteristics in terms of signal-to-noise ratio and acquisition artifacts that need to be accounted for to yield reliable and reproducible results. We propose a pixel classifier-based image preprocessing step that aims to minimize platform-dependency for all multiplex image analysis pipelines. Signal detection and noise reduction as well as artifact removal can be posed as a pixel classification problem in which all pixels in multiplex images can be assigned to two general classes of either I) signal of interest or II) artifacts and noise. The resulting feature representation maps contain pixel-scale representations of the input data, but exhibit significantly increased signal-to-noise ratios with normalized pixel values as output data. We demonstrate the validity of our proposed image preprocessing approach by comparing the results of two well-accepted and widely-used image analysis pipelines.


Subject(s)
Image Processing, Computer-Assisted , Tomography, X-Ray Computed , Image Processing, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Artifacts , Signal-To-Noise Ratio , Algorithms
4.
J Immunol ; 208(11): 2482-2496, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35500934

ABSTRACT

Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial hyperplasia and inflammation. The finding of autoantibodies in seropositive RA suggests that complement system activation might play a pathophysiologic role due to the local presence of immune complexes in the joints. Our first objective was to explore the Pathobiology of Early Arthritis Cohort (PEAC) mRNA sequencing data for correlations between clinical disease severity as measured by DAS28-ESR (disease activity score in 28 joints for erythrocyte sedimentation rate) and complement system gene expression, both in the synovium and in blood. Our second objective was to determine the biodistribution using multiplex immunohistochemical staining of specific complement activation proteins and inhibitors from subjects in the Accelerating Medicines Partnership (AMP) RA/SLE study. In the PEAC study, there were significant positive correlations between specific complement gene mRNA expression levels in the synovium and DAS28-ESR for the following complement genes: C2, FCN1, FCN3, CFB, CFP, C3AR1, C5AR1, and CR1 Additionally, there were significant negative correlations between DAS28-ESR and Colec12, C5, C6, MASP-1, CFH, and MCP In the synovium there were also significant positive correlations between DAS28-ESR and FcγR1A, FcγR1B, FcγR2A, and FcγR3A Notably, CFHR4 synovial expression was positively correlated following treatment with the DAS28-ESR at 6 mo, suggesting a role in worse therapeutic responses. The inverse correlation of C5 RNA expression in the synovium may underlie the failure of significant benefit from C5/C5aR inhibitors in clinical trials performed in patients with RA. Multiplex immunohistochemical analyses of early RA synovium reveal significant evidence of regional alterations of activation and inhibitory factors that likely promote local complement activation.


Subject(s)
Arthritis, Rheumatoid , Synovial Membrane , Arthritis, Rheumatoid/drug therapy , Complement System Proteins/metabolism , Gene Expression , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism , Severity of Illness Index , Synovial Membrane/metabolism , Tissue Distribution
5.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Article in English | MEDLINE | ID: mdl-34074778

ABSTRACT

Tumors frequently express unmutated self-tumor-associated antigens (self-TAAs). However, trial results using self-TAAs as vaccine targets against cancer are mixed, often attributed to deletion of T cells with high-affinity receptors (TCRs) for self-TAAs during T cell development. Mutating these weak self-TAAs to produce higher affinity, effective vaccines is challenging, since the mutations may not benefit all members of the broad self-TAA-specific T cell repertoire. We previously identified a common weak murine self-TAA that we converted to a highly effective antitumor vaccine by a single amino acid substitution. In this case the modified and natural self-TAAs still raised very similar sets of CD8 T cells. Our structural studies herein show that the modification of the self-TAA resulted in a subtle change in the major histocompatibility complex I-TAA structure. This amino acid substitution allowed a dramatic conformational change in the peptide during subsequent TCR engagement, creating a large increase in TCR affinity and accounting for the efficacy of the modified self-TAA as a vaccine. These results show that carefully selected, well-characterized modifications to a poorly immunogenic self-TAA can rescue the immune response of the large repertoire of weakly responding natural self-TAA-specific CD8 T cells, driving them to proliferate and differentiate into functional effectors. Subsequently, the unmodified self-TAA on the tumor cells, while unable to drive this response, is nevertheless a sufficient target for the CD8 cytotoxic effectors. Our results suggest a pathway for more efficiently identifying variants of common self-TAAs, which could be useful in vaccine development, complementing other current nonantigen-specific immunotherapies.


Subject(s)
Antigens, Neoplasm/immunology , Autoantigens/immunology , CD8-Positive T-Lymphocytes/immunology , Neoplasms, Experimental/immunology , Peptides/immunology , Receptors, Antigen, T-Cell/immunology , Animals , Cancer Vaccines/immunology , Cell Line, Tumor , Female , Mice , Mice, Inbred BALB C , Neoplasms, Experimental/prevention & control , Sf9 Cells , Spodoptera
6.
PLoS Comput Biol ; 18(6): e1009486, 2022 06.
Article in English | MEDLINE | ID: mdl-35704658

ABSTRACT

The tumor microenvironment (TME), which characterizes the tumor and its surroundings, plays a critical role in understanding cancer development and progression. Recent advances in imaging techniques enable researchers to study spatial structure of the TME at a single-cell level. Investigating spatial patterns and interactions of cell subtypes within the TME provides useful insights into how cells with different biological purposes behave, which may consequentially impact a subject's clinical outcomes. We utilize a class of well-known spatial summary statistics, the K-function and its variants, to explore inter-cell dependence as a function of distances between cells. Using techniques from functional data analysis, we introduce an approach to model the association between these summary spatial functions and subject-level outcomes, while controlling for other clinical scalar predictors such as age and disease stage. In particular, we leverage the additive functional Cox regression model (AFCM) to study the nonlinear impact of spatial interaction between tumor and stromal cells on overall survival in patients with non-small cell lung cancer, using multiplex immunohistochemistry (mIHC) data. The applicability of our approach is further validated using a publicly available multiplexed ion beam imaging (MIBI) triple-negative breast cancer dataset.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Data Science , Humans , Immunohistochemistry , Tumor Microenvironment
7.
Cancer Immunol Immunother ; 71(4): 919-932, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34519839

ABSTRACT

CD47 is frequently overexpressed on tumor cells and is an attractive therapeutic target. The mechanism by which anti-CD47 immunotherapy eliminates cutaneous lymphoma has not been explored. We utilized CRISPR/Cas-9 CD47 knock-out, depletion of NK cells, and mice genetically deficient in IFN-γ to elucidate the mechanism of anti-CD47 therapy in a murine model of cutaneous T cell lymphoma (CTCL). CD47 was found to be a crucial factor for tumor progression since CD47 KO CTCL exhibited a delay in tumor growth. The treatment of CD47 WT murine CTCL with anti-CD47 antibodies led to a significant reduction in tumor burden as early as four days after the first treatment and accompanied by an increased percentage of cytotoxic NK cells at the tumor site. The depletion of NK cells resulted in marked attenuation of the anti-tumor effect of anti-CD47. Notably, the treatment of CD47 WT tumors in IFN-γ KO mice with anti-CD47 antibodies was efficient, demonstrating that IFN-γ was not required to mediate anti-CD47 therapy. We were able to potentiate the therapeutic effect of anti-CD47 therapy by IFN-α. That combination resulted in an increased number of cytotoxic CD107a + IFN-γ-NK1.1 cells and intermediate CD62L + NKG2a-NK1.1. Correlative data from a clinical trial (clinicaltrials.gov, NCT02890368) in patients with CTCL utilizing SIRPαFc to block CD47 confirmed our in vivo observations.


Subject(s)
Mycosis Fungoides , Skin Neoplasms , Animals , CD47 Antigen , Humans , Interferon-gamma , Killer Cells, Natural , Mice , Mycosis Fungoides/drug therapy , Mycosis Fungoides/pathology , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology
8.
Cytotherapy ; 24(2): 193-204, 2022 02.
Article in English | MEDLINE | ID: mdl-34711500

ABSTRACT

Immune effector cell (IEC) therapies have revolutionized our approach to relapsed B-cell malignancies, and interest in the investigational use of IECs is rapidly expanding into other diseases. Current challenges in the analysis of IEC therapies include small sample sizes, limited access to clinical trials and a paucity of predictive biomarkers of efficacy and toxicity associated with IEC therapies. Retrospective and prospective multi-center cell therapy trials can assist in overcoming these barriers through harmonization of clinical endpoints and correlative assays for immune monitoring, allowing additional cross-trial analysis to identify biomarkers of failure and success. The Consortium for Pediatric Cellular Immunotherapy (CPCI) offers a unique platform to address the aforementioned challenges by delivering cutting-edge cell and gene therapies for children through multi-center clinical trials. Here the authors discuss some of the important pre-analytic variables, such as biospecimen collection and initial processing procedures, that affect biomarker assays commonly used in IEC trials across participating CPCI sites. The authors review the recent literature and provide data to support recommendations for alignment and standardization of practices that can affect flow cytometry assays measuring immune effector function as well as interpretation of cytokine/chemokine data. The authors also identify critical gaps that often make parallel comparisons between trials difficult or impossible.


Subject(s)
Immunotherapy , Neoplasm Recurrence, Local , Cell- and Tissue-Based Therapy , Child , Humans , Prospective Studies , Retrospective Studies
9.
Cancer Immunol Immunother ; 70(4): 989-1000, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33097963

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) has a heterogeneous tumor microenvironment (TME) comprised of myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages, neutrophils, regulatory T cells, and myofibroblasts. The precise mechanisms that regulate the composition of the TME and how they contribute to radiotherapy (RT) response remain poorly understood. In this study, we analyze changes in immune cell populations and circulating chemokines in patient samples and animal models of pancreatic cancer to characterize the immune response to radiotherapy. Further, we identify STAT3 as a key mediator of immunosuppression post-RT. We found granulocytic MDSCs (G-MDSCs) and neutrophils to be increased in response to RT in murine and human PDAC samples. We also found that RT-induced STAT3 phosphorylation correlated with increased MDSC infiltration and proliferation. Targeting STAT3 using an anti-sense oligonucleotide in combination with RT circumvented RT-induced MDSC infiltration, enhanced the proportion of effector T cells, and improved response to RT. In addition, STAT3 inhibition contributed to the remodeling of the PDAC extracellular matrix when combined with RT, resulting in decreased collagen deposition and fibrotic tissue formation. Collectively, our data provide evidence that targeting STAT3 in combination with RT can mitigate the pro-tumorigenic effects of RT and improve tumor response.


Subject(s)
Carcinoma, Pancreatic Ductal/radiotherapy , Gamma Rays , Myeloid-Derived Suppressor Cells/immunology , Oligonucleotides, Antisense/genetics , Pancreatic Neoplasms/radiotherapy , STAT3 Transcription Factor/antagonists & inhibitors , Animals , Apoptosis , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Cell Proliferation , Female , Humans , Immunosuppression Therapy , Mice , Mice, Inbred C57BL , Mice, Nude , Myeloid-Derived Suppressor Cells/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Prognosis , STAT3 Transcription Factor/genetics , T-Lymphocytes, Regulatory/immunology , Tumor Cells, Cultured , Tumor Microenvironment
10.
Breast Cancer Res ; 22(1): 128, 2020 11 23.
Article in English | MEDLINE | ID: mdl-33225939

ABSTRACT

BACKGROUND: Extracellular vesicles (EVs) are small membrane particles that contribute to cancer progression and metastases by transporting biologically significant proteins and nucleic acids. They may also serve as biomarkers of various disease states or important therapeutic targets. Breast cancer EVs have the potential to change the behavior of other cells in their microenvironment. However, the proteomic content of EVs isolated from young women's breast cancer patients and the mechanisms underlying the influence of EVs on tumor cell behavior have not yet been reported. METHODS: In our current translational studies, we compared the proteomic content of EVs isolated from invasive breast cancer cell lines and plasma samples from young women's breast cancer (YWBC) patients and age-matched healthy donors using mass spectrometry. We analyzed the functionality of EVs in two dimensional tumor cell invasion assays and the gene expression changes in tumor cells after incubation with EVs. RESULTS: We found that treatment with EVs from both invasive breast cancer cell lines and plasma of YWBC patients altered the invasive properties of non-invasive breast cancer cells. Proteomics identified differences between EVs from YWBC patients and healthy donors that correlated with their altered function. Further, we identified gene expression changes in non-invasive breast cancer cells after treatment with EVs that implicate the Focal Adhesion Kinase (FAK) signaling pathway as a potential targetable pathway affected by breast cancer-derived EVs. CONCLUSIONS: Our results suggest that the proteome of EVs from breast cancer patients reflects their functionality in tumor motility assays and may help elucidate the role of EVs in breast cancer progression.


Subject(s)
Breast Neoplasms/pathology , Extracellular Vesicles/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Adolescent , Adult , Breast Neoplasms/blood , Case-Control Studies , Cell Adhesion , Cell Communication , Cell Line, Tumor , Extracellular Vesicles/pathology , Female , Gene Expression Profiling , Humans , Middle Aged , Neoplasm Invasiveness , Proteomics , Signal Transduction , Young Adult
11.
Nat Immunol ; 9(12): 1379-87, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18978795

ABSTRACT

The survival of transitional and mature B cells requires both the B cell antigen receptor (BCR) and BLyS receptor 3 (BR3), which suggests that these receptors send signals that are nonredundant or that engage in crosstalk with each other. Here we show that BCR signaling induced production of the nonclassical transcription factor NF-kappaB pathway substrate p100, which is required for transmission of BR3 signals and thus B cell survival. The capacity for sustained p100 production emerged during transitional B cell differentiation, the stage at which BCR signals begin to mediate survival rather than negative selection. Our findings identify a molecular mechanism for the reliance of primary B cells on continuous BR3 and BCR signaling, as well as for the gradual resistance to negative selection that is acquired during B cell maturation.


Subject(s)
B-Cell Activating Factor/metabolism , B-Lymphocytes/cytology , Cell Differentiation/immunology , NF-kappa B/metabolism , Receptors, Antigen, B-Cell/metabolism , Signal Transduction/immunology , Animals , B-Cell Activating Factor/immunology , B-Lymphocytes/immunology , Cell Line , Cell Survival/immunology , Flow Cytometry , Humans , Immunoblotting , Mice , NF-kappa B/immunology , Receptor Cross-Talk/immunology , Receptors, Antigen, B-Cell/immunology
12.
Int J Mol Sci ; 21(24)2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33352903

ABSTRACT

Lipid catabolism represents an Achilles heel in prostate cancer (PCa) that can be exploited for therapy. CPT1A regulates the entry of fatty acids into the mitochondria for beta-oxidation and its inhibition has been shown to decrease PCa growth. In this study, we examined the pharmacological blockade of lipid oxidation with ranolazine in TRAMPC1 PCa models. Oral administration of ranolazine (100 mg/Kg for 21 days) resulted in decreased tumor CD8+ T-cells Tim3 content, increased macrophages, and decreased blood myeloid immunosuppressive monocytes. Using multispectral staining, drug treatments increased infiltration of CD8+ T-cells and dendritic cells compared to vehicle. Functional studies with spleen cells of drug-treated tumors co-cultured with TRAMPC1 cells showed increased ex vivo T-cell cytotoxic activity, suggesting an anti-tumoral response. Lastly, a decrease in CD4+ and CD8+ T-cells expressing PD1 was observed when exhausted spleen cells were incubated with TRAMPC1 Cpt1a-KD compared to the control cells. These data indicated that genetically blocking the ability of the tumor cells to oxidize lipid can change the activation status of the neighboring T-cells. This study provides new knowledge of the role of lipid catabolism in the intercommunication of tumor and immune cells, which can be extrapolated to other cancers with high CPT1A expression.


Subject(s)
Adipose Tissue/metabolism , Immunity , Oxidation-Reduction , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Adipose Tissue/drug effects , Animals , Biomarkers, Tumor , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cytotoxicity, Immunologic/drug effects , Dendritic Cells/immunology , Dendritic Cells/metabolism , Lipid Metabolism/drug effects , Male , Mice , Molecular Targeted Therapy , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/etiology , Ranolazine/pharmacology , Tumor Burden
13.
Cancer Immunol Immunother ; 66(4): 503-513, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28108766

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of myeloid cells that are increased in the peripheral blood of cancer patients and limit productive immune responses against tumors. Immunosuppressive MDSCs are well characterized in murine splenic tissue and are found at higher frequencies in spleens of tumor-bearing mice. However, no studies have yet analyzed these cells in parallel human spleens. We hypothesized that MDSCs would be increased in the spleens of human cancer patients, similar to tumor-bearing mice. We compared the frequency and function of MDSC subsets in dissociated human spleen from 16 patients with benign pancreatic cysts and 26 patients with a variety of cancers. We found that total MDSCs (Linneg CD11bpos CD33pos HLA-DRneg), granulocytic MDSCs (additional markers CD14neg CD15pos), and monocytic MDSCs (CD14pos CD15neg) were identified in human spleen. The monocytic subset was the most prominent in both spleen and peripheral blood and the granulocytic subset was expanded in the spleen relative to matched peripheral blood samples. Importantly, the frequency of CD15pos MDSCs in the spleen was increased in patients with cancer compared to patients with benign pancreatic cysts and was associated with a significantly increased risk of death and decreased overall survival. Finally, MDSCs isolated from the spleen suppressed T cell responses, demonstrating for the first time the functional capacity of human splenic MDSCs. These data suggest that the human spleen is a potential source of large quantities of cells with immunosuppressive function for future characterization and in-depth studies of human MDSCs.


Subject(s)
Granulocytes/immunology , Monocytes/immunology , Myeloid-Derived Suppressor Cells/immunology , Neoplasms/immunology , Pancreatic Cyst/immunology , Spleen/immunology , T-Lymphocytes/immunology , Adult , Aged , Cell Count , Cells, Cultured , Female , Humans , Immunophenotyping , Immunosuppression Therapy , Lymphocyte Activation , Male , Middle Aged , Neoplasms/mortality , Survival Analysis , Tumor Escape
14.
J Biol Chem ; 288(46): 33213-25, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24106273

ABSTRACT

Vaccines that incorporate peptide mimics of tumor antigens, or mimotope vaccines, are commonly used in cancer immunotherapy and function by eliciting increased numbers of T cells that cross-react with the native tumor antigen. Unfortunately, they often elicit T cells that do not cross-react with or that have low affinity for the tumor antigen. Using a high affinity tumor-specific T cell clone, we identified a panel of mimotope vaccines for the dominant peptide antigen from a mouse colon tumor that elicits a range of tumor protection following vaccination. The TCR from this high affinity T cell clone was rarely identified in ex vivo evaluation of tumor-specific T cells elicited by mimotope vaccination. Conversely, a low affinity clone found in the tumor and following immunization was frequently identified. Using peptide libraries, we determined if this frequently identified TCR improved the discovery of efficacious mimotopes. We demonstrated that the representative TCR identified more protective mimotopes than the high affinity TCR. These results suggest that targeting a dominant fraction of tumor-specific T cells generates potent immunity and that consideration of the available T cell repertoire is necessary for targeted T cell therapy. These results have important implications when optimizing mimotope vaccines for cancer immunotherapy.


Subject(s)
Antigens, Neoplasm/immunology , Cancer Vaccines/immunology , Immunotherapy , Neoplasm Proteins/immunology , Neoplasms/therapy , Peptide Library , Receptors, Antigen, T-Cell/immunology , Animals , Cancer Vaccines/pharmacology , Mice , Mice, Inbred BALB C , Neoplasms/immunology
15.
Cancer Immunol Res ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39115368

ABSTRACT

Ovarian cancer is the deadliest gynecological malignancy, and therapeutic options and mortality rates over the last three decades have largely not changed. Recent studies indicate that the composition of the tumor immune microenvironment (TIME) influences patient outcomes. To improve spatial understanding of the TIME, we performed multiplexed ion beam imaging on 83 human high-grade serous carcinoma tumor samples, identifying about 160,000 cells across 23 cell types. For 77 of these samples meeting inclusion criteria, we generated composition features based on cell type proportions, spatial features based on the distances between cell types, and spatial network features representing cell interactions and cell clustering patterns, which we linked to traditional clinical and immunohistochemical variables and patient overall survival (OS) and progression-free survival (PFS) outcomes. Among these features, we found several significant univariate correlations, including B-cell contact with M1 macrophages (OS hazard ratio HR=0.696, p=0.011, PFS HR=0.734, p=0.039). We then used high-dimensional random forest models to evaluate out-of-sample predictive performance for OS and PFS outcomes and to derive relative feature importance scores for each feature. The top model for predicting low or high PFS used TIME composition and spatial features and achieved an average AUC (area under the receiver-operating characteristic curve) score of 0.71. The results demonstrate the importance of spatial structure in understanding how the TIME contributes to treatment outcomes. Furthermore, the present study provides a generalizable roadmap for spatial analyses of the TIME in ovarian cancer research.

16.
bioRxiv ; 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38352574

ABSTRACT

Despite ovarian cancer being the deadliest gynecological malignancy, there has been little change to therapeutic options and mortality rates over the last three decades. Recent studies indicate that the composition of the tumor immune microenvironment (TIME) influences patient outcomes but are limited by a lack of spatial understanding. We performed multiplexed ion beam imaging (MIBI) on 83 human high-grade serous carcinoma tumors - one of the largest protein-based, spatially-intact, single-cell resolution tumor datasets assembled - and used statistical and machine learning approaches to connect features of the TIME spatial organization to patient outcomes. Along with traditional clinical/immunohistochemical attributes and indicators of TIME composition, we found that several features of TIME spatial organization had significant univariate correlations and/or high relative importance in high-dimensional predictive models. The top performing predictive model for patient progression-free survival (PFS) used a combination of TIME composition and spatial features. Results demonstrate the importance of spatial structure in understanding how the TIME contributes to treatment outcomes. Furthermore, the present study provides a generalizable roadmap for spatial analyses of the TIME in ovarian cancer research.

17.
Cancer Res Commun ; 4(3): 822-833, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38451784

ABSTRACT

High-grade serous carcinoma (HGSC) of the fallopian tube, ovary, and peritoneum is the most common type of ovarian cancer and is predicted to be immunogenic because the presence of tumor-infiltrating lymphocytes conveys a better prognosis. However, the efficacy of immunotherapies has been limited because of the immune-suppressed tumor microenvironment (TME). Tumor metabolism and immune-suppressive metabolites directly affect immune cell function through the depletion of nutrients and activation of immune-suppressive transcriptional programs. Tryptophan (TRP) catabolism is a contributor to HGSC disease progression. Two structurally distinct rate-limiting TRP catabolizing enzymes, indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase 2 (TDO2), evolved separately to catabolize TRP. IDO1/TDO2 are aberrantly expressed in carcinomas and metabolize TRP into the immune-suppressive metabolite kynurenine (KYN), which can engage the aryl hydrocarbon receptor to drive immunosuppressive transcriptional programs. To date, IDO inhibitors tested in clinical trials have had limited efficacy, but those inhibitors did not target TDO2, and we find that HGSC cell lines and clinical outcomes are more dependent on TDO2 than IDO1. To identify inflammatory HGSC cancers with poor prognosis, we stratified patient ascites samples by IL6 status, which correlates with poor prognosis. Metabolomics revealed that IL6-high patient samples had enriched KYN. TDO2 knockdown significantly inhibited HGSC growth and TRP catabolism. The orally available dual IDO1/TDO2 inhibitor, AT-0174, significantly inhibited tumor progression, reduced tumor-associated macrophages, and reduced expression of immune-suppressive proteins on immune and tumor cells. These studies demonstrate the importance of TDO2 and the therapeutic potential of AT-0174 to overcome an immune-suppressed TME. SIGNIFICANCE: Developing strategies to improve response to chemotherapy is essential to extending disease-free intervals for patients with HGSC of the fallopian tube, ovary, and peritoneum. In this article, we demonstrate that targeting TRP catabolism, particularly with dual inhibition of TDO2 and IDO1, attenuates the immune-suppressive microenvironment and, when combined with chemotherapy, extends survival compared with chemotherapy alone.


Subject(s)
Ovarian Neoplasms , Tryptophan Oxygenase , Female , Humans , Tryptophan Oxygenase/genetics , Tryptophan/metabolism , B7-H1 Antigen , Interleukin-6 , Kynurenine/metabolism , Ovarian Neoplasms/drug therapy , Enzyme Inhibitors/pharmacology , Macrophages/metabolism , Tumor Microenvironment
18.
Mol Cancer Res ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136655

ABSTRACT

Poly ADP-ribose polymerase inhibitors (PARPi) are first-line maintenance therapy for ovarian cancer and an alternative therapy for several other cancer types. However, PARPi-resistance is rising and there is currently an unmet need to combat PARPi-resistant tumors. Here, we created an immunocompetent, PARPi-resistant mouse model to test the efficacy of combinatory PARPi and euchromatic histone methyltransferase 1/2 inhibitor (EHMTi) in the treatment of PARPi-resistant ovarian cancer. We discovered that inhibition of EHMT1/2 resensitizes cells to PARPi. Markedly, we show that single EHMTi and combinatory EHMTi/PARPi significantly reduced PARPi-resistant tumor burden and that this reduction is partially dependent on CD8 T cells. Altogether, our results show a low-toxicity drug that effectively treats PARPi-resistant ovarian cancer in an immune-dependent manner, supporting its entry into clinical development and potential incorporation of immunotherapy. Implications: Targeting the epigenome of therapy-resistant ovarian cancer induces an anti-tumor response mediated in part through an anti-tumor immune response.

19.
Mol Cancer Ther ; : OF1-OF16, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38863225

ABSTRACT

Despite the success of poly-ADP-ribose polymerase inhibitors (PARPi) in the clinic, high rates of resistance to PARPi presents a challenge in the treatment of ovarian cancer, thus it is imperative to find therapeutic strategies to combat PARPi resistance. Here, we demonstrate that inhibition of epigenetic modifiers euchromatic histone lysine methyltransferases 1/2 (EHMT1/2) reduces the growth of multiple PARPi-resistant ovarian cancer cell lines and tumor growth in a PARPi-resistant mouse model of ovarian cancer. We found that combinatory EHMT and PARP inhibition increases immunostimulatory double-stranded RNA formation and elicits several immune signaling pathways in vitro. Using epigenomic profiling and transcriptomics, we found that EHMT2 is bound to transposable elements, and that EHMT inhibition leads to genome-wide epigenetic and transcriptional derepression of transposable elements. We validated EHMT-mediated activation of immune signaling and upregulation of transposable element transcripts in patient-derived, therapy-naïve, primary ovarian tumors, suggesting potential efficacy in PARPi-sensitive disease as well. Importantly, using multispectral immunohistochemistry, we discovered that combinatory therapy increased CD8 T-cell activity in the tumor microenvironment of the same patient-derived tissues. In a PARPi-resistant syngeneic murine model, EHMT and PARP inhibition combination inhibited tumor progression and increased Granzyme B+ cells in the tumor. Together, our results provide evidence that combinatory EHMT and PARP inhibition stimulates a cell autologous immune response in vitro, is an effective therapy to reduce PARPi-resistant ovarian tumor growth in vivo, and promotes antitumor immunity activity in the tumor microenvironment of patient-derived ex vivo tissues of ovarian cancer.

20.
Mol Cancer Ther ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38714351

ABSTRACT

Despite the success of Poly-ADP-ribose polymerase inhibitors (PARPi) in the clinic, high rates of resistance to PARPi presents a challenge in the treatment of ovarian cancer, thus it is imperative to find therapeutic strategies to combat PARPi resistance. Here, we demonstrate that inhibition of epigenetic modifiers Euchromatic histone lysine methyltransferases 1/2 (EHMT1/2) reduces the growth of multiple PARPi-resistant ovarian cancer cell lines and tumor growth in a PARPi-resistant mouse model of ovarian cancer. We found that combinatory EHMT and PARP inhibition increases immunostimulatory dsRNA formation and elicits several immune signaling pathways in vitro. Using epigenomic profiling and transcriptomics, we found that EHMT2 is bound to transposable elements, and that EHMT inhibition leads to genome-wide epigenetic and transcriptional derepression of transposable elements. We validated EHMT-mediated activation of immune signaling and upregulation of transposable element transcripts in patient-derived, therapy-naïve, primary ovarian tumors, suggesting potential efficacy in PARPi-sensitive disease as well. Importantly, using multispectral immunohistochemistry, we discovered that combinatory therapy increased CD8 T cell activity in the tumor microenvironment of the same patient-derived tissues. In a PARPi-resistant syngeneic murine model, EHMT and PARP inhibition combination inhibited tumor progression and increased Granzyme B+ cells in the tumor. Together, our results provide evidence that combinatory EHMT and PARP inhibition stimulates a cell autologous immune response in vitro, is an effective therapy to reduce PARPi resistant ovarian tumor growth in vivo, and promotes anti-tumor immunity activity in the tumor microenvironment of patient-derived ex vivo tissues of ovarian cancer.

SELECTION OF CITATIONS
SEARCH DETAIL