Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Molecules ; 29(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38792232

ABSTRACT

Poly(2-hydroxyethylmethacrylate-co-2-(dimethylamino)ethyl methacrylate), P(HEMA-co-DMAEMAx), copolymers were quaternized through the reaction of a part of (dimethylamino)ethyl moieties of DMAEMA units with 1-bromohexadecane. Antimicrobial coatings were further prepared through the cross-linking reaction between the remaining DMAEMA units of these copolymers and the epoxide ring of poly(N,N-dimethylacrylamide-co-glycidyl methacrylate), P(DMAm-co-GMAx), copolymers. The combination of P(HEMA-co-DMAEMAx)/P(DMAm-co-GMAx) copolymers not only enabled control over quaternization and cross-linking for coating stabilization but also allowed the optimization of the processing routes towards a more facile cost-effective methodology and the use of environmentally friendly solvents like ethanol. Careful consideration was given to achieve the right content of quaternized units, qDMAEMA, to ensure antimicrobial efficacy through an appropriate amphiphilic balance and sufficient free DMAEMA groups to react with GMA for coating stabilization. Optimal synthesis conditions were achieved by membranes consisting of cross-linked P(HEMA78-co-DMAEMA9-co-qDMAEMA13)/P(DMAm-co-GMA42) membranes. The obtained membranes were multifunctional as they were self-standing and antimicrobial, while they demonstrated a distinct fast response to changes in humidity levels, widening the opportunities for the construction of "smart" antimicrobial actuators, such as non-contact antimicrobial switches.


Subject(s)
Anti-Infective Agents , Humidity , Methacrylates , Methacrylates/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/chemical synthesis , Cross-Linking Reagents/chemistry , Microbial Sensitivity Tests , Polymers/chemistry , Polymers/chemical synthesis , Polymers/pharmacology
2.
Int J Mol Sci ; 24(7)2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37047567

ABSTRACT

The development of polymeric materials as antifouling coatings for aquaculture nets is elaborated in the present work. In this context, cross-linked polymeric systems based on quaternary ammonium compounds (immobilized or releasable) prepared under mild aqueous conditions were introduced as a more environmentally friendly methodology for coating nets on a large scale. To optimize the duration of action of the coatings, a multilayer coating method was applied by combining the antimicrobial organo-soluble copolymer poly(cetyltrimethylammonium 4-styrenesulfonate-co-glycidyl methacrylate) [P(SSAmC16-co-GMA20)] as the first layer with either the water-soluble copolymer poly(vinylbenzyl trimethylammonium chloride-co-acrylic acid) [P(VBCTMAM-co-AA20)] or the water-soluble polymers poly(acrylic acid) (PAA) and poly(hexamethylene guanidine), PHMG, as the second layer. The above-mentioned approach, followed by thermal cross-linking of the polymeric coatings, resulted in stable materials with controlled release of the biocidal species. The coated nets were studied in terms of their antifouling efficiency under accelerated biofouling conditions as well as under real conditions in an aquaculture field. Resistance to biofouling after three water-nutrient replenishments was observed under laboratory accelerated biofouling conditions. In addition, at the end of the field test (day 23) the uncoated nets were completely covered by marine contaminants, while the coated nets remained intact over most of their extent.


Subject(s)
Anti-Infective Agents , Biofouling , Quaternary Ammonium Compounds/pharmacology , Biofouling/prevention & control , Polymers , Water
3.
Int J Mol Sci ; 24(3)2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36768898

ABSTRACT

The design of self-healing agents is a topic of important scientific interest for the development of high-performance materials for coating applications. Herein, two series of copolymers of 2-hydroxyethyl methacrylate (HEMA) with either the hydrophilic N,N-dimethylacrylamide (DMAM) or the epoxy group-bearing hydrophobic glycidyl methacrylate were synthesized and studied as potential self-healing agents of waterborne polyurethanes (WPU). The molar percentage of DMAM or GMA units in the P(HEMA-co-DMAMy) and P(HEMA-co-GMAy) copolymers varies from 0% up to 80%. WPU/polymer composites with a 10% w/w or 20% w/w copolymer content were prepared with the facile method of solution mixing. Thanks to the presence of P(HEMA-co-DMAMy) copolymers, WPU/P(HEMA-co-DMAMy) composite films exhibited surface hydrophilicity (water contact angle studies), and tendency for water uptake (water sorption kinetics studies). In contrast, the surfaces of the WPU/P(HEMA-co-GMAy) composites were less hydrophilic compared with the WPU/P(HEMA-co-DMAMy) ones. The room-temperature, water-mediated self-healing ability of these composites was investigated through addition of water drops on the damaged area. Both copolymer series exhibited healing abilities, with the hydrophilic P(HEMA-co-DMAMy) copolymers being more promising. This green healing procedure, in combination with the simple film fabrication process and simple healing triggering, makes these materials attractive for practical applications.


Subject(s)
Polymers , Polyurethanes , Polymers/chemistry , Temperature , Water/chemistry
4.
Int J Mol Sci ; 23(15)2022 Jul 23.
Article in English | MEDLINE | ID: mdl-35897694

ABSTRACT

Self-healing materials and self-healing mechanisms are two topics that have attracted huge scientific interest in recent decades. Macromolecular chemistry can provide appropriately tailored functional polymers with desired healing properties. Herein, we report the incorporation of glycidyl methacrylate-based (GMA) copolymers in waterborne polyurethanes (WPUs) and the study of their potential healing ability. Two types of copolymers were synthesized, namely the hydrophobic P(BA-co-GMAy) copolymers of GMA with n-butyl acrylate (BA) and the amphiphilic copolymers P(PEGMA-co-GMAy) of GMA with a poly(ethylene glycol) methyl ether methacrylate (PEGMA) macromonomer. We demonstrate that the blending of these types of copolymers with two WPUs leads to homogenous composites. While the addition of P(BA-co-GMAy) in the WPUs leads to amorphous materials, the addition of P(PEGMA-co-GMAy) copolymers leads to hybrid composite systems varying from amorphous to semi-crystalline, depending on copolymer or blend composition. The healing efficiency of these copolymers was explored upon application of two external triggers (addition of water or heating). Promising healing results were exhibited by the final composites when water was used as a healing trigger.


Subject(s)
Methacrylates , Polyurethanes , Epoxy Compounds , Methacrylates/chemistry , Polymers/chemistry , Water/chemistry
5.
Int J Mol Sci ; 22(24)2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34948032

ABSTRACT

One of the concerns today's societies face is the development of resistant pathogenic microorganisms. The need to tackle this problem has driven the development of innovative antimicrobial materials capable of killing or inhibiting the growth of microorganisms. The present study investigates the dependence of the antimicrobial activity and solubility properties on the hydrophilicity/hydrophobicity ratio of antimicrobial coatings based on quaternary ammonium compounds. In this line, suitable hydrophilic and hydrophobic structural units were selected for synthesizing the antimicrobial copolymers poly(4-vinylbenzyl dimethyldodecylammonium chloride-co-acrylic acid), P(VBCDDA-co-AA20) and poly(dodecyltrimethylammonium 4-styrene sulfonate-co-glycidyl methacrylate), P(SSAmC12-co-GMA20), bearing an alkyl chain of 12 carbons either through covalent bonding or through electrostatic interaction. The cross-linking reaction of the carboxylic group of acrylic acid (AA) with the epoxide group of glycidyl methacrylate (GMA) of these two series of reactive antimicrobial copolymers was explored in blends, obtained through solution casting after curing at various temperatures. The release of the final products in pure water and NaCl 1 M solutions (as analyzed by gravimetry and total organic carbon, TOC/total nitrogen, TN analyses), could be controlled by the coating composition. The cross-linked polymeric membranes of composition 60/40 w/w % ratios led to 97.8 and 99.7% mortality for Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), respectively, whereas the coating 20/80 w/w % resulted in 96.6 and 99.8% cell reduction. Despite the decrease in hydrophobicity (from a 16- to a 12-carbon alkyl chain), the new materials maintained the killing efficacy, while at the same time resulting in increased release to the aqueous solution.


Subject(s)
Anti-Infective Agents/chemical synthesis , Escherichia coli/growth & development , Quaternary Ammonium Compounds/chemical synthesis , Staphylococcus aureus/growth & development , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Epoxy Compounds/chemistry , Escherichia coli/drug effects , Hydrophobic and Hydrophilic Interactions , Methacrylates/chemistry , Microbial Sensitivity Tests , Microbial Viability/drug effects , Molecular Structure , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/pharmacology , Solubility , Staphylococcus aureus/drug effects , Surface Properties
6.
Int J Mol Sci ; 22(9)2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33925039

ABSTRACT

The synthesis of environmentally friendly antimicrobial polymeric coatings, especially in the case of aquaculture, that inhibit the growth of bio-deposits is a very important issue that will contribute to the cost reduction of nets' cleaning process as well as the protection of the submarine wealth from the biostatic substances used so far. In the present work, the antimicrobial polymers P(SSAmC16-co-VBCHAMx) and the terpolymer P(SSAmC16w-co-VBCHAMx-co-GMAy) were synthesized, bearing quaternary ammonium compounds, electrostatically bound and covalently attached at the same polymer chain. The combination of the two types is of particular importance, as it can provide effective antimicrobial polymeric materials with self-polishing capabilities as a result of the released nature of the antimicrobial, in combination with the permanent local action of the immobilized species. The cross-linking reaction of the terpolymer P(SSAmC16w-co-VBCHAMx-co-GMAy) with the homopolymer polyacrylic acid (PAA) was tested at 120 °C in terms of the equivalent ratio between epoxy and carboxyl groups. The synthesized polymers were further used for the coating of aquaculture nets and tested in terms of antifouling efficiency in lab and scale-up conditions. Uncoated nets were also used in all applications for comparison reasons. The coated nets performed efficiently for 35 days in lab-scale and 66 days in scale-up conditions, showing a high antifouling activity in both fields compared to the uncoated nets.


Subject(s)
Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/pharmacology , Biofouling/prevention & control , Anti-Infective Agents/chemistry , Aquaculture/methods , Cross-Linking Reagents , Green Chemistry Technology/methods , Magnetic Resonance Spectroscopy , Polymers/chemical synthesis , Polymers/chemistry , Quaternary Ammonium Compounds/chemical synthesis , Quaternary Ammonium Compounds/chemistry , Solubility , Spectroscopy, Fourier Transform Infrared , Static Electricity , Surface Properties
7.
Molecules ; 25(7)2020 Apr 06.
Article in English | MEDLINE | ID: mdl-32268518

ABSTRACT

Crosslinked polymeric materials based on a quaternary trimethylammonium compound were developed and evaluated as potential antifouling coatings. For this purpose, two water-soluble random copolymers, poly(4-vinylbenzyltrimethylammonium chloride-co-acrylic acid) P(VBCTMAM-co-AAx) and poly(N,N-dimethylacrylamide-co-glycidylmethacrylate) P(DMAm-co-GMAx), were synthesized via free radical polymerization. A water based approach for the synthesis of P(VBCTMAM-co-AAx) copolymer was used. Coatings of the complementary reactive copolymers in different compositions were obtained by curing at 120 °C for one day and were used to coat aquaculture nets. These nets were evaluated in respect to their release rate using Total Organic Carbon (TOC) and Total Nitrogen (TN) measurements. Finally, the antifouling efficacy of these newly-composed durable coatings was investigated for 14 days in accelerated conditions. The results showed that this novel polymeric material provides contact-killing antifouling activity for a short time period, whereas it functions efficiently in biofouling removal after high-pressure cleaning.


Subject(s)
Biofouling/prevention & control , Methylamines/chemistry , Polymers/chemistry , Water/chemistry
8.
Molecules ; 24(23)2019 Dec 02.
Article in English | MEDLINE | ID: mdl-31810324

ABSTRACT

Perylene diimide (PDI) is one of the most studied functional dyes due to their structural versatility and fine tuning of the materials properties. Core substituted PDIs are prominent n-type semiconductor materials that could be used as non-fullerene acceptors in organic photovoltaics. Herein, we develop versatile organic building blocks based on PDI by decorating the PDI core with quinoline groups. Styryl and hydroxy phenyl mono and difunctionalized molecules were prepared using mono-nitro and dibromo bay substituted PDIs by Suzuki coupling with the respective boronic acid derivatives. A novel methodology using nitro-PDI under Suzuki coupling conditions as an electrophile partner was successfully tested. Furthermore, the PDI derivatives were used for the synthesis of soluble, electron accepting small molecules combining PDI with weak electron withdrawing quinoline derivatives. The new molecules presented wide absorbance in the visible spectrum from 450 to almost 700 nm while their LUMO levels and their energy levels are in the range of -3.8 to -4.2 eV.


Subject(s)
Imides/chemistry , Perylene/analogs & derivatives , Quinolines/chemistry , Chemical Phenomena , Chemistry Techniques, Synthetic , Magnetic Resonance Spectroscopy , Molecular Structure , Perylene/chemistry , Quinolines/chemical synthesis , Solubility
9.
Phys Chem Chem Phys ; 18(5): 4154-65, 2016 Feb 07.
Article in English | MEDLINE | ID: mdl-26781962

ABSTRACT

Hybrid materials based on perfluorophenyl functionalized quinolines directly attached onto the sp(2) hybridized surface of carbon nanostructures have been prepared and studied herein along with their precursor semiconducting small molecules. Tails of different polarities have been used so that the molecules would present improved solubility and controllable affinity for the selected substrates. These materials were evaluated for their electronic and electrochemical properties for potential application in organic photovoltaic solar cells (OPVs), using UPS, XPS and CV measurements after deposition onto oxygen plasma cleaned Si wafers or solvent treated ITO coated glass. A weak interaction between the fluorine atoms and both the Si and the ITO substrates was observed by XPS. The extent of this interfacial interaction was found to be related to the orientation of the quinoline moieties on the organic layer. Moreover, the combination of XPS and UPS analyses showed that the absolute energy value of the HOMO level increased as the amount of surface fluorine atoms increased. CV measurements revealed that hybridisation of the small molecules with carbon nanostructures decreases the materials' energy gap and increases the absolute energy value of the LUMO level. These features prove the efficiency of the proposed method to produce materials with controlled energy levels for solar cell devices.

10.
Faraday Discuss ; 185: 433-54, 2015.
Article in English | MEDLINE | ID: mdl-26396034

ABSTRACT

We herein present the coordination-driven supramolecular synthesis and photophysics of a [4+4] and a [2+2] assembly, built up by alternately collocated donor-acceptor chromophoric building blocks based, respectively, on the boron dipyrromethane (Bodipy) and perylene bisimide dye (PBI). In these multichromophoric scaffolds, the intensely absorbing/emitting dipoles of the Bodipy subunit are, by construction, cyclically arranged at the corners and aligned perpendicular to the plane formed by the closed polygonal chain comprising the PBI units. Steady-state and fs time-resolved spectroscopy reveal the presence of efficient energy transfer from the vertices (Bodipys) to the edges (PBIs) of the polygons. Fast excitation energy hopping - leading to a rapid excited state equilibrium among the low energy perylene-bisimide chromophores - is revealed by fluorescence anisotropy decays. The dynamics of electronic excitation energy hopping between the PBI subunits was approximated on the basis of a theoretical model within the framework of Förster energy transfer theory. All energy-transfer processes are quantitatively describable with Förster theory. The influence of structural deformations and orientational fluctuations of the dipoles in certain kinetic schemes is discussed.


Subject(s)
Macrocyclic Compounds/chemical synthesis , Ethylene Dichlorides/chemistry , Fluorescent Dyes/chemistry , Imides/chemistry , Macrocyclic Compounds/chemistry , Magnetic Resonance Spectroscopy , Perylene/analogs & derivatives , Perylene/chemistry
11.
Molecules ; 20(12): 21313-27, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26633329

ABSTRACT

In the present work a detailed study of new bacteriostatic copolymers with quaternized ammonium groups introduced in the polymer chain through covalent attachment or electrostatic interaction, was performed. Different copolymers have been considered since beside the active species, the hydrophobic/hydrophilic nature of the co-monomer was also evaluated in the case of covalently attached bacteriostatic groups, aiming at achieving permanent antibacterial activity. Homopolymers with quaternized ammonium/phosphonium groups were also tested for comparison reasons. The antimicrobial activity of the synthesized polymers after 3 and 24 h of exposure at 4 and 22 °C was investigated on cultures of Gram-negative (P. aeruginosa, E. coli) and Gram-positive (S. aureus, E. faecalis) bacteria. It was found that the combination of the hydrophilic monomer acrylic acid (AA), at low contents, with the covalently attached bacteriostatic group vinyl benzyl dimethylhexadecylammonium chloride (VBCHAM) in the copolymer P(AA-co-VBCHAM88), resulted in a high bacteriostatic activity against P. aeruginosa and E. faecalis (6 log reduction in certain cases). Moreover, the combination of covalently attached VBCHAM units with electrostatically bound cetyltrimethylammonium 4-styrene sulfonate (SSAmC16) units in the P(SSAmC16-co-VBCHAMx) copolymers led to efficient antimicrobial materials, especially against Gram-positive bacteria, where a log reduction between 4.9 and 6.2 was verified. These materials remain remarkably efficient even when they are incorporated in polysulfone membranes.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Polymers/pharmacology , Quaternary Ammonium Compounds/chemistry , Anti-Bacterial Agents/chemistry , Bacteria/growth & development , Hydrophobic and Hydrophilic Interactions , Microbial Sensitivity Tests , Polymers/chemistry , Static Electricity
12.
Polymers (Basel) ; 16(2)2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38257069

ABSTRACT

The encapsulation of active components is currently used as common methodology for the insertion of additional functions like self-healing properties on a polymeric matrix. Among the different approaches, polyurea microcapsules are used in different applications. The design of polyurea microcapsules (MCs) containing active diisocyanate compounds, namely isophorone diisocyanate (IPDI) or hexamethylene diisocyanate (HDI), is explored in the present work. The polyurea shell of MCs is formed through the interfacial polymerization of oil-in-water emulsions between the highly active methylene diphenyl diisocyanate (MDI) and diethylenetriamine (DETA), while the cores of MCs contain, apart from IPDI or HDI, a liquid Novolac resin. The hydroxyl functionalities of the resin were either unprotected (Novolac resin), partially protected (Benzyl Novolac resin) or fully protected (Acetyl Novolac resin). It has been found that the formation of MCs is controlled by the MDI/DETA ratio, while the shape and size of MCs depends on the homogenization rate applied for emulsification. The encapsulated active compound, as determined through the titration of isocyanate (NCO) groups, was found to decrease with the hydroxyl functionality content of the Novolac resin used, indicating a reaction between NCO and the hydroxyl groups. Through the thorough investigation of the organic phase, the rapid reaction (within a few minutes) of MDI with the unprotected Novolac resin was revealed, while a gradual decrease in the NCO groups (within two months) has been observed through the evolution of the Attenuated Total Reflectance-Fourier-Transform Infrared (ATR-FTIR) spectroscopy and titration, due to the reaction of these groups with the hydroxyl functionalities of unprotected and partially protected Novolac resin. Over longer times (above two months), the reaction of the remaining NCO groups with humidity was evidenced, especially when the fully protected Acetyl Novolac resin was used. HDI was found to be more susceptible to reactions, as compared with IPDI.

13.
Nanomaterials (Basel) ; 14(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39120351

ABSTRACT

In this study, fully aromatic polyether sulfones were developed, bearing blue, yellow, and orange-red π-conjugated semiconducting units. Carbazole-, anthracene-, and benzothiadiazole-based fluorophores are copolymerized with a diphenylsulfone moiety. A diphenylpyridine comonomer was additionally utilized, acting as both a solubilizing unit and a weak blue fluorescent group. Using this rationale, fluorescent polyarylethers with high molecular weights, up to 70 kDa, were developed, showing film formation ability and high thermal stability, while preserving excellent solubility in common organic, nonvolatile, and nonchlorinated solvents. Fine-tuning of the emission color was achieved through subtle changes of the comonomers' type and ratio. Single-chromophore-bearing copolymers emitted in the blue or the yellow region of the visible spectrum, while the dual-chromophore-bearing terpolymers emitted throughout the visible spectrum, resulting in white light emission. Solutions of 20 wt% in polar aprotic solvents at ambient conditions allowed the deposition of fluorescent copolyethers and printing from non-chlorinated solvents. All polyethers were evaluated for their structural and optoelectronic properties, and selected copolymers were successfully used in the emitting layer (EML) of organic light-emitting diode (OLED) devices, using either rigid or flexible substrates. Remarkable color stability was displayed in all cases for up to 15 V of bias voltage. The Commission Internationale de L'Eclairage (CIE) of the fabricated devices is located in the blue (0.16, 0.16), yellow (0.44, 0.50), or white region of the visible spectrum (0.33, 0.38) with minimal changes according to the ratio of the comonomers. The versatile methodology toward semiconducting polyethersulfones for polymer light-emitting diodes (PLEDs) developed herein led to the scaled-up production of luminescent polymers of up to 25 g of high-molecular-weight single batches, demonstrating the effectiveness of this approach as a straightforward tool to facilitate the synthesis of flexible and printable EMLs for large-area PLED coverage.

14.
Neurobiol Dis ; 54: 43-58, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23466695

ABSTRACT

Cervical spondylotic myelopathy (CSM) is the most common form of spinal cord impairment in adults. However critical gaps in our knowledge of the pathobiology of this disease have limited therapeutic advances. To facilitate progress in the field of regenerative medicine for CSM, we have developed a unique, clinically relevant model of CSM in rats. To model CSM, a piece of synthetic aromatic polyether, to promote local calcification, was implanted microsurgically under the C6 lamina in rats. We included a sham group in which the material was removed 30s after the implantation. MRI confirmed postero-anterior cervical spinal cord compression at the C6 level. Rats modeling CSM demonstrated insidious development of a broad-based, ataxic, spastic gait, forelimb weakness and sensory changes. No neurological deficits were noted in the sham group during the course of the study. Spasticity of the lower extremities was confirmed by a significantly greater H/M ratio in CSM rats in H reflex recordings compared to sham. Rats in the compression group experienced significant gray and white matter loss, astrogliosis, anterior horn cell loss and degeneration of the corticospinal tract. Moreover, chronic progressive posterior compression of the cervical spinal cord resulted in compromise of the spinal cord microvasculature, blood-spinal cord barrier disruption, inflammation and activation of apoptotic signaling pathways in neurons and oligodendrocytes. Finally, CSM rats were successfully subjected to decompressive surgery as confirmed by MRI. In summary, this novel rat CSM model reproduces the chronic and progressive nature of human CSM, produces neurological deficits and neuropathological features accurately mimicking the human condition, is MRI compatible and importantly, allows for surgical decompression.


Subject(s)
Disease Models, Animal , Spinal Cord Compression/complications , Spinal Cord Compression/physiopathology , Spondylosis , Animals , Blotting, Western , Cervical Vertebrae , Female , Immunohistochemistry , In Situ Nick-End Labeling , Rats , Rats, Sprague-Dawley , Spinal Cord Diseases/complications , Spinal Cord Diseases/physiopathology , Translational Research, Biomedical
15.
ACS Appl Mater Interfaces ; 15(8): 11193-11207, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36787100

ABSTRACT

Humidity-responsive materials have attracted increasing attention for their potential use in various applications, e.g., sensors, soft robotics, and human-machine interfaces. Much effort has been focused on the use of ionic liquids for the construction of humidity-responsive sensors; yet, not enough attention has been paid on the susceptibility of the used poly(ionic liquid)s to microorganisms. This is especially relevant to the wide use of the polymers for biomedical applications, e.g., wearable body-condition sensors or healthcare control systems. We herein describe the development of dual functional, self-standing, monolayer antimicrobial membranes derived from cross-linked copolymers functionalized with ionic liquids. In a first step, random copolymers of poly(4-vinylbenzyl N-alkyl imidazolium chloride-co-acrylic acid), P(VBCImCn-co-AA20), were synthesized bearing aliphatic chains of different lengths (where n = 1, 4, 8, 12, 16 carbon atoms) to investigate the effect of hydrophobicity/hydrophilicity on the humidity-responsive properties of the copolymer and its antimicrobial activity. The aforementioned copolymers were later blended with the complementary reactive copolymers of poly(cetyl trimethylammonium 4-styrene sulfonate-co-glycidyl methacrylate), P(SSAmC16-co-GMA20), to provide highly stable films and coatings through thermal cross-linking. The membrane P(VBCImC12-co-AA20)/P(SSAmC16-co-GMA20) with a molar ratio of 3:1 (mol AA/mol GMA) exhibited immediate and high response to moisture through folding or flipping motions when placed on a wet filter paper or on the palm of a hand. The inhibition of growth for selected bacterial species (Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus) on the copolymer membranes was dependent on the length of the imidazolium alkyl chain and the species. Additionally, in the case of the cross-linked P(VBCImCn-co-AA20)/P(SSAmC16-co-GMA20) membranes, the overall efficacy was very high against all microorganisms tested, which, combined with their high humidity responsiveness, enables their potential application.


Subject(s)
Anti-Infective Agents , Ionic Liquids , Humans , Ionic Liquids/pharmacology , Humidity , Anti-Infective Agents/pharmacology , Polymers/pharmacology , Staphylococcus aureus , Escherichia coli
16.
Materials (Basel) ; 17(1)2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38203932

ABSTRACT

Extensive research has been dedicated to the solution-processable white organic light-emitting diodes (WOLEDs), which can potentially influence future solid-state lighting and full-color flat-panel displays. The proposed strategy based on WOLEDs involves blending two or more emitting polymers or copolymerizing two or more emitting chromophores with different doping concentrations to produce white light emission from a single layer. Toward this direction, the development of blends was conducted using commercial blue poly(9,9-di-n-octylfluorenyl2,7-diyl) (PFO), green poly(9,9-dioctylfluorenealt-benzothiadiazole) (F8BT), and red spiro-copolymer (SPR) light-emitting materials, whereas the synthesized copolymers were based on different chromophores, namely distyryllanthracene, distyrylcarbazole, and distyrylbenzothiadiazole, as yellow, blue, and orange-red emitters, respectively. A comparative study between the two approaches was carried out to examine the main challenge for these doping systems, which is ensuring the proper balance of emissions from all the units to span the entire visible range. The emission characteristics of fabricated WOLEDs will be explored in terms of controlling the emission from each emitter, which depends on two possible mechanisms: energy transfer and carrier trapping. The aim of this work is to achieve pure white emission through the color mixing from different emitters based on different doping concentrations, as well as color stability during the device operation. According to these aspects, the WOLED devices based on the copolymers of two chromophores exhibit the most encouraging results regarding white color emission coordinates (0.28, 0.31) with a CRI value of 82.

17.
ACS Energy Lett ; 8(4): 1900-1910, 2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37090167

ABSTRACT

Multi-gigawatt-scale hydrogen production by water electrolysis is central in the green transition when it comes to storage of energy and forming the basis for sustainable fuels and materials. Alkaline water electrolysis plays a key role in this context, as the scale of implementation is not limited by the availability of scarce and expensive raw materials. Even though it is a mature technology, the new technological context of the renewable energy system demands more from the systems in terms of higher energy efficiency, enhanced rate capability, as well as dynamic, part-load, and differential pressure operation capability. New electrode separators that can support high currents at small ohmic losses, while effectively suppressing gas crossover, are essential to achieving this. This Focus Review compares the three main development paths that are currently being pursued in the field with the aim to identify the advantages and drawbacks of the different approaches in order to illuminate rational ways forward.

18.
Nanomaterials (Basel) ; 12(14)2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35889657

ABSTRACT

In the current study, we propose a simple hydrothermal pathway to synthesize nano-structured Mg(OH)2 after application of thermal decomposition followed by hydration of commercial minerals based on hydromagnesite and huntite. The synthesis of nano-materials is performed without the use of any catalyst. The effect of decomposition temperature on the hydrothermal synthesis of Mg(OH)2 is extensively studied. It is shown that the morphology of resulting structures consists typically of particles ~200 nm in diameter and ~10 nm in thickness. Study of the structure at the molecular level designates the composition and supports the nano-sized characteristics of the produced materials. The associated thermal properties combined with the corresponding optical properties suggest that the material may be used as a flame retardant filler with enhanced transparency. In this concept, the flame retardancy of composite coatings containing the produced nano-sized Mg(OH)2 was examined in terms of limiting oxygen index (LOI), i.e., the minimum concentration of oxygen that just supports flaming combustion.

19.
Polymers (Basel) ; 14(22)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36433089

ABSTRACT

Wood and wood-based products are extensively used in the building sector due to their interesting combination of properties. Fire safety and fire spread, however, are of utmost concern for the protection of buildings. Therefore, in timber structures, wood must be treated with fire-retardant materials in order to improve its reaction to fire. This article highlights the flame retardancy of novel hybrid organic-inorganic halogen-free coatings applied on plywood substrates. For this purpose, either a huntite-rich mineral (H5) or its modified nano-Mg (OH)2 type form (H5-m), acting as an inorganic (nano) filler, was functionalized with reactive oligomers (ROs) and incorporated into a waterborne polymeric matrix. A water-soluble polymer (P (SSNa-co-GMAx)), combining its hydrophilic nature with functional epoxide groups, was used as the reactive oligomer in order to enhance the compatibility between the filler and the matrix. Among various coating compositions, the system composed of 13% polymeric matrix, 73% H5 and 14% ROs, which provided the best coating quality and flame retardancy, was selected for the coating of plywood on a larger scale in one or two layers. The results indicated that the novel plywood coating systems with the addition of ecological coating formulations (WF-13, WF-14 and WF-15), prepared at two layers, reached Euroclass B according to EN13501-1, which is the best possible for fire systems applied to wood.

20.
ACS Omega ; 7(39): 35204-35216, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36211061

ABSTRACT

Air pollution by pathogens has posed serious concern on global health during the last decades, especially since the breakout of the last pandemic. Therefore, advanced high-efficiency techniques for air purification are highly on demand. However, in air-filtering devices, the prevention of secondary pollution that may occur on the filters remains a challenge. Toward this goal, in the present work, we demonstrate a facile and eco-friendly process for the biocidal treatment of commercial high-efficiency particulate air filters. The antibacterial filters were successfully prepared through spray coating of aqueous solutions based on biocidal water-soluble polymers, poly(sodium 4-styrene sulfonate-co-cetyl trimethylammonium 4-styrene sulfonate-co-glycidyl methacrylate) [P(SSNa24-co-SSAmC1656-co-GMA20)] and poly(2-dimethylaminoethyl)methacrylate. Significantly, an optimized green route was developed for the synthesis of the used polymers in aqueous conditions and their stabilization through cross-linking reaction, leading to biocidal air filters with long-lasting activity. The developed coatings presented strong and rapid antibacterial activity against Staphylococcus aureus (in 5 min) and Escherichia coli (in 15 min). Moreover, the cytotoxicity test of the polymeric materials toward Α549 lung adenocarcinoma cells indicated very low toxicity as they did not affect either the cell growth or cell morphology. The above-mentioned results together with the scalable and easy-to-produce green methodology suggest that these materials can be promising candidates as filter coatings for use on air-purification devices.

SELECTION OF CITATIONS
SEARCH DETAIL