Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Anal Chem ; 95(50): 18611-18618, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38057995

ABSTRACT

Deoxynivalenol (DON) is a mycotoxin secreted by Fusarium species, posing great harm to food safety and human health. Therefore, it is of great significance to study its toxic effects and mechanism. miR-34a is a representative biomarker during the process of DON-induced apoptosis. Herein, a DON-triggered dual-color composite probe was constructed for simultaneous imaging of DON and miR-34a in living cells. The aptamer blocks the recognition sequence of miR-34a to realize DON-triggered cell imaging. The specific binding of DON with its aptamer and HCR induced by miR-34a resulted in the recovery of fluorescence of the dual-color Au NCs. Under the optimal conditions, the correlation between the relative fluorescence intensities of dual-color Au NCs showed good linear relationships with the logarithm of DON and miR-34a concentration, respectively. With the increase in DON concentration (0-20 µg/mL) and stimulation time (0-12 h), the fluorescence of dual-color Au NCs gradually recovered. This dual-color Au NCs composite probe can realize simultaneous detection of DON and miR-34a induced by DON, which is significant for verifying the cytotoxic mechanism of DON.


Subject(s)
MicroRNAs , Mycotoxins , Trichothecenes , Humans , Gold , Trichothecenes/toxicity , Mycotoxins/toxicity , MicroRNAs/genetics , MicroRNAs/metabolism
2.
Compr Rev Food Sci Food Saf ; 22(6): 4242-4281, 2023 11.
Article in English | MEDLINE | ID: mdl-37732485

ABSTRACT

Emulsion systems are extensively utilized in the food industry, including dairy products, such as ice cream and salad dressing, as well as meat products, beverages, sauces, and mayonnaise. Meanwhile, diverse advanced technologies have been developed for emulsion preparation. Compared with other techniques, high-intensity ultrasound (HIUS) and high-pressure homogenization (HPH) are two emerging emulsification methods that are cost-effective, green, and environmentally friendly and have gained significant attention. HIUS-induced acoustic cavitation helps in efficiently disrupting the oil droplets, which effectively produces a stable emulsion. HPH-induced shear stress, turbulence, and cavitation lead to droplet disruption, altering protein structure and functional aspects of food. The key distinctions among emulsification devices are covered in this review, as are the mechanisms of the HIUS and HPH emulsification processes. Furthermore, the preparation of emulsions including natural polymers (e.g., proteins-polysaccharides, and their complexes), has also been discussed in this review. Moreover, the review put forward to the future HIUS and HPH emulsification trends and challenges. HIUS and HPH can prepare much emulsifier-stable food emulsions, (e.g., proteins, polysaccharides, and protein-polysaccharide complexes). Appropriate HIUS and HPH treatment can improve emulsions' rheological and emulsifying properties and reduce the emulsions droplets' size. HIUS and HPH are suitable methods for developing protein-polysaccharide forming stable emulsions. Despite the numerous studies conducted on ultrasonic and homogenization-induced emulsifying properties available in recent literature, this review specifically focuses on summarizing the significant progress made in utilizing biopolymer-based protein-polysaccharide complex particles, which can provide valuable insights for designing new, sustainable, clean-label, and improved eco-friendly colloidal systems for food emulsion. PRACTICAL APPLICATION: Utilizing complex particle-stabilized emulsions is a promising approach towards developing safer, healthier, and more sustainable food products that meet legal requirements and industrial standards. Moreover, the is an increasing need of concentrated emulsions stabilized by biopolymer complex particles, which have been increasingly recognized for their potential health benefits in protecting against lifestyle-related diseases by the scientific community, industries, and consumers.


Subject(s)
Emulsifying Agents , Ultrasonics , Emulsions/chemistry , Emulsifying Agents/chemistry , Polysaccharides/chemistry , Biopolymers , Proteins
3.
Mar Drugs ; 19(7)2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34201595

ABSTRACT

Penicillium oxalicum k10 isolated from soil revealed the hydrolyzing ability of shrimp chitin and antifungal activity against Sclerotinia sclerotiorum. The k10 chitinase was produced from a powder chitin-containing medium and purified by ammonium sulfate precipitation and column chromatography. The purified chitinase showed maximal activity toward colloidal chitin at pH 5 and 40 °C. The enzymatic activity was enhanced by potassium and zinc, and it was inhibited by silver, iron, and copper. The chitinase could convert colloidal chitin to N-acetylglucosamine (GlcNAc), (GlcNAc)2, and (GlcNAc)3, showing that this enzyme had endocleavage and exocleavage activities. In addition, the chitinase prevented the mycelial growth of the phytopathogenic fungi S. sclerotiorum and Mucor circinelloides. These results indicate that k10 is a potential candidate for producing chitinase that could be useful for generating chitooligosaccharides from chitinous waste and functions as a fungicide.


Subject(s)
Antifungal Agents/pharmacology , Chitin/chemistry , Chitinases/pharmacology , Penicillium/chemistry , Animals , Aquatic Organisms , Fungi/drug effects
4.
Bioresour Bioprocess ; 11(1): 33, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38647936

ABSTRACT

Unspecific peroxygenases (UPOs) are glycosylated enzymes that provide an efficient method for oxyfunctionalizing a variety of substrates using only hydrogen peroxide (H2O2) as the oxygen donor. However, their poor heterologous expression has hindered their practical application. Here, a novel UPO from Marasmius fiardii PR910 (MfiUPO) was identified and heterologously expressed in Pichia pastoris. By employing a two-copy expression cassette, the protein titer reached 1.18 g L-1 in a 5 L bioreactor, marking the highest record. The glycoprotein rMfiUPO exhibited a smeared band in the 40 to 55 kDa range and demonstrated hydroxylation, epoxidation and alcohol oxidation. Moreover, the peroxidative activity was enhanced by 150% after exposure to 50% (v/v) acetone for 40 h. A semi-preparative production of 4-OH-ß-ionone on a 100 mL scale resulted in a 54.2% isolated yield with 95% purity. With its high expression level, rMfiUPO is a promising candidate as an excellent parental template for enhancing desirable traits such as increased stability and selectivity through directed evolution, thereby meeting the necessary criteria for practical application.

5.
Biosens Bioelectron ; 264: 116628, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39133994

ABSTRACT

Acrylamide (AA) in heat-processed foods has emerged as a global health problem, mainly carcinogenic, neurotoxic, and reproductive toxicity, and an increasing number of researchers have delved into elucidating its toxicological mechanisms. Studies have demonstrated that exposure of HepG2 by AA in a range of concentrations can induce the upregulation of miR-21 and miR-221. Monitoring the response of intracellular miRNAs can play an important role in unraveling the mechanisms of AA toxicity. Here, multicolor aggregation induced emission nano particle (AIENP) probes were constructed from three AIE dyes for simultaneous imaging of intracellular AA and AA-induced miR-21/miR-221 by combining the recognition function of AA aptamers and the signal amplification of a DNAzyme walker. The surface of these nanoparticles contains carboxyl groups, facilitating their linkage to a substrate chain modified with a fluorescent quencher group via an amide reaction. Optimization experiments were conducted to determine the optimal substrate-to-DNAzyme ratio, confirming its efficacy as a walker for signal amplification. Sensitive detection of AA, miR-21 and miR-221 was achieved in extracellular medium, with detection limits of 0.112 nM for AA, 0.007 pM and 0.003 pM for miR-21 and miR-221, respectively, demonstrating excellent selectivity. Intracellularly, ZIF-8 structure collapsed, releasing Zn2+, activating DNAzyme cleavage activity, and the fluorescence of multicolor AIENPs within HepG2 cells gradually recovered with increasing stimulation time (0-12 h) and concentrations of AA (0-500 µM). This dynamic response unveiled the relationship between AA exposure and miR-21/miR-221 expression, further validating the carcinogenicity of AA.


Subject(s)
Acrylamide , Biosensing Techniques , DNA, Catalytic , MicroRNAs , MicroRNAs/genetics , Humans , DNA, Catalytic/chemistry , Biosensing Techniques/methods , Hep G2 Cells , Acrylamide/chemistry , Acrylamide/toxicity , Nanoparticles/chemistry , Nanoparticles/toxicity , Fluorescent Dyes/chemistry , Limit of Detection , Aptamers, Nucleotide/chemistry
6.
JACS Au ; 4(4): 1654-1663, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38665664

ABSTRACT

Unspecific peroxygenases (UPOs), secreted by fungi, demonstrate versatility in catalyzing challenging selective oxyfunctionalizations. However, the number of peroxygenases and corresponding variants with tailored selectivity for a broader substrate scope is still limited due to the lack of efficient engineering strategies. In this study, a new unspecific peroxygenase from Coprinopsis marcescibilis (CmaUPO) is identified and characterized. To enhance or reverse the enantioselectivity of wildtype (WT) CmaUPO catalyzed asymmetric hydroxylation of ethylbenzene, CmaUPO was engineered using an efficient superfolder-green-fluorescent-protein (sfGFP)-mediated secretion system in Escherichia coli. Iterative saturation mutagenesis (ISM) was used to target the residual sites lining the substrate tunnel, resulting in two variants: T125A/A129G and T125A/A129V/A247H/T244A/F243G. The two variants greatly improved the enantioselectivities [21% ee (R) for WT], generating the (R)-1-phenylethanol or (S)-1-phenylethanol as the main product with 99% ee (R) and 84% ee (S), respectively. The sfGFP-mediated secretion system in E. coli demonstrates applicability for different UPOs (AaeUPO, CciUPO, and PabUPO-I). Therefore, this developed system provides a robust platform for heterologous expression and enzyme engineering of UPOs, indicating great potential for their sustainable and efficient applications in various chemical transformations.

7.
Int J Biol Macromol ; 260(Pt 2): 129479, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38237831

ABSTRACT

Pullulan is naturally occurring polysaccharide exhibited potential applications for food preservation has gained increasing attention over the last half-century. Recent studies focused on efficient preservation and targeted inhibition using active composite ingredients and advanced technologies. This has led to the emergence of pullulan-based biofilm preservation. This review extensively studied the characteristics of pullulan-based films and coatings, including their mechanical strength, water vapor permeability, thermal stability, and potential as a microbial agent. Furthermore, the distinct characteristics of pullulan, production methods, and activation strategies, such as pullulan derivatization, various compounded ingredients (plant extracts, microorganisms, and animal additives), and other technologies (e.g., ultrasound), are thoroughly studied for the functional property enhancement of pullulan-based films and coatings, ensuring optimal preservation conditions for diverse food products. Additionally, we explore hypotheses that further illuminate pullulan's potential as an eco-friendly bioactive material for food packaging applications. In addition, this review evaluates various methods to improve the efficiency of the film-forming mechanism, such as improving the direct coating process, bioactive packaging films, and implementing layer-by-layer coatings. Finally, current analyses put forward suggestions for future advancement in pullulan-based bioactive films, with the aim of expanding their range of potential applications.


Subject(s)
Food Preservation , Glucans , Animals , Glucans/pharmacology , Food Preservation/methods , Food Packaging/methods , Permeability
8.
Colloids Surf B Biointerfaces ; 234: 113709, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38159329

ABSTRACT

A non-destructive technique known as multi-scale ultrasound (MSU) was employed to modify the emulsion consisting of glycosylated bovine whey protein (WP) and pullulan (Pu). To assess the effect on the structural and emulsifying properties of the WP-Pu, the formulated emulsion, was treated with divergent MSU at (single: 20 kHz, 40 kHz, and 60 kHz; dual: 20-40 kHz, 40-60 kHz, and 20-60 kHz; and tri: 20-40-60 kHz) frequency for a duration of 30 min. The tri-frequency, treated emulsion showed improved emulsifying stability compared to the control and MSU-treated single, and dual-frequency samples, as indicated by the particle size, structural morphology, and adsorbed protein. The molecular docking and numerous spectral analysis provided evidence that WP can undergo successful phenolation. This modified form of WP then interacts with Pu through various forces, including H-bonding and other mechanisms, resulting in the formation of a composite emulsion. The rheological properties revealed that both the control emulsion and the MSU-treated emulsion exhibited non-Newtonian pseudoplastic flow behavior. This behavior is characterized by shear thinning, where the viscosity decreases with increasing shear rate. The shear rates tested ranged from 1 to 300 1/s, additionally, the degree of crystallinity increased from 18.2° to 19.4°. Overall, the tri-frequency effect was most pronounced compared to single and dual-frequency. Ultrasonication, an emerging non-thermal technology, proves to be an efficient approach for the formulation of WP-Pu composites. These composites have significant potential for use in drug delivery systems and functional foods.


Subject(s)
Glucans , Polysaccharides , Animals , Cattle , Whey Proteins/chemistry , Emulsions/chemistry , Molecular Docking Simulation
9.
Food Chem ; 457: 140048, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-38917566

ABSTRACT

Clove essential oil (CEO) exhibited potent antibacterial efficacy and are obtained from Eugenia caryophyllata tree flower buds. Herein, CEO nanoemulsions were prepared using various concentrations of casein protein treated with ultrasound for different time interval. The study demonstrated that CEO nanoemulsions with 5% casein protein subjected to ultrasound for 10 min displayed the most minimal particle size. The pullulan­sodium alginate film incorporated with nanoemulsions treated with ultrasound exhibited enhanced physico-mechanical characteristics. Based on the structural analysis, the application of ultrasonic treatment improved intermolecular compatibility and organized molecular structure by strengthening hydrogen bonds. Furthermore, the composite film displayed remarkable efficacy against E. coli and S. aureus as well as longer retention of essential oils. The use of the developed films to protect cherry fruits and mushrooms produced promising results, emphasizing their potential in food packaging applications.


Subject(s)
Alginates , Clove Oil , Emulsions , Food Packaging , Food Preservation , Glucans , Oils, Volatile , Syzygium , Glucans/chemistry , Glucans/pharmacology , Alginates/chemistry , Alginates/pharmacology , Clove Oil/chemistry , Clove Oil/pharmacology , Emulsions/chemistry , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Food Packaging/instrumentation , Food Preservation/methods , Food Preservation/instrumentation , Syzygium/chemistry , Agaricales/chemistry , Escherichia coli/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcus aureus/drug effects , Fruit/chemistry
10.
Semin Oncol Nurs ; : 151716, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39164160

ABSTRACT

OBJECTIVES: Childhood cancer survivors are at risk for chemotherapy-induced peripheral neuropathy (CIPN). Physical therapy (PT) improves CIPN symptoms, but little is known about survivors' PT utilization. We described characteristics of survivors with ≥ grade 2 CIPN, investigated PT referral and attendance, and described characteristics of survivors who attended and did not attend PT. METHODS: Childhood cancer survivors <21 years old at cancer diagnosis and ≥2 years posttherapy, living in the United States, evaluated at a regional survivorship clinic were included in this retrospective analysis if they had motor CIPN. Symptomatic CIPN (≥grade 2 by Common Terminology Criteria for Adverse Events) and PT referral/attendance were tabulated. Patient characteristics from the medical record, and neighborhood characteristics (retrieved using survivors' zip code from the National Neighborhood Data Archive) were described by group. RESULTS: Among 91 survivors with CIPN (median 17.5 years old, 8.1 years postcancer diagnosis, 45.1% female), 35 (38.5%) had ≥ grade 2 CIPN. Survivors with ≥ grade 2 CIPN were 28.6% female, and 45.7% were <13 years old. Twenty-four (68.6%) survivors with ≥ grade 2 CIPN agreed to PT referral, and 15 (42.9%) attended PT. Among survivors who attended PT, 73.3% were <13 years old. Neighborhood characteristics of survivors included median percentage of adults without a high school diploma (6.7% PT attendees, 12.5% nonattendees), median percentage of adults who are foreign-born (11.5% PT attendees, 16.4% nonattendees), and median percentage of households with an annual income of <$15,000 (3.2% PT attendees, 6.5% nonattendees). CONCLUSIONS: While 68.6% of survivors with ≥ grade 2 CIPN were referred to PT, only 42.9% attended. Studies to better understand barriers to PT attendance and interventions to improve attendance are needed, especially in older survivors. IMPLICATIONS FOR NURSING PRACTICE: Nurses can play a key role in survivor education and care coordination to help optimize PT attendance.

11.
Mol Genet Genomic Med ; 12(8): e2503, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39140707

ABSTRACT

BACKGROUND: The causes of migraine remain unclear. Evidence suggests that the MAPK and PI3K/Akt signaling pathways play a role in migraine pathogenesis. However, studies on genetic polymorphisms in the two pathways associated with migraine are still limited. METHODS: This study included 226 migraineurs and 452 age- and sex-matched nonmigraine control individuals. Genotyping of 31 Single Nucleotide Polymorphisms (SNPs) in 21 genes was performed. The relationship between migraine and gene polymorphisms was analyzed by using logistic regression. SNP-SNP interactions were examined by a generalized multifactor dimension reduction (GMDR) approach. The possible role of SNPs was evaluated with gene expression data from the GTEx database. RESULTS: The RASGRP2-rs2230414 GT genotype was associated with decreased migraine risk compared with the wild-type GG genotype [ORadj (95% CI): 0.674(0.458-0.989)]. PIK3R1-rs3730089 was associated with migraine in the recessive model [ORadj (95% CI): 1.446(1.004-2.083)]. The CACNA1H-rs61734410 CT genotype was associated with migraine risk [ORadj (95% CI): 1.561(1.068-2.281)]. One significant two-way SNP-SNP interaction was found (PRKCA rs2228945-BDNF rs6265) (p = 0.0107). Significant eQTL and sQTL signals were observed for the SNP rs2230414. CONCLUSIONS: This is the first study to systematically reveal significant associations between MAPK and PI3K/Akt signaling pathway-related gene polymorphisms and migraine risk.


Subject(s)
Migraine Disorders , Polymorphism, Single Nucleotide , Proto-Oncogene Proteins c-akt , Humans , Migraine Disorders/genetics , Female , Male , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Adult , Signal Transduction/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , MAP Kinase Signaling System/genetics , Class Ia Phosphatidylinositol 3-Kinase/genetics , Middle Aged
13.
Food Chem ; 420: 136142, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37075570

ABSTRACT

To prevent food spoilage caused by microbial infection, the development of an environmentally friendly antimicrobial preservation material is crucial. Here, the microporous γ-CD-MOFs was utilized to encapsulate the hydrophobic active substance curcumin, resulting in the preparation of a non-toxic antimicrobial material (Cur-CD-MOFs). The results revealed that curcumin encapsulation in Cur-CD-MOFs occurred primarily in the carbonyl group, benzene ring, and enolic side ring of curcumin. The Cur-CD-MOFs had a 100% bactericidal effect on Escherichia coli and Staphylococcus aureus at 4 h and 8 h, and a strong inhibitory effect on aerial mycelium of Penicillium expansum and Botrytis cinerea. Furthermore, the incorporation of Cur-CD-MOFs improved the Pul/Tre film barrier and mechanical properties. The effectiveness of Cur-CD-MOFs-Pul/Tre in retaining fruit freshness was validated using Centennial Seedless grapes. This study confirmed that Cur-CD-MOFs is a promising antibacterial material, and Cur-CD-MOFs-Pul/Tre will be a potent candidate for food preservation.


Subject(s)
Curcumin , Staphylococcus aureus , Anti-Infective Agents/chemistry
14.
Food Chem ; 402: 134237, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36174350

ABSTRACT

This study developed two novel food packaging films, oat protein/pullulan (Op/Pul) and Nisin-loaded oat protein/pullulan (Nis@Op/Pul) films. Ultrasound was introduced to improve its mechanical, structural and physicochemical properties. The Op/Pul film has lower light transmittance, water vapour and oxygen permeability (OP) and improved film uniformity than pure oat protein and pullulan film. The addition of Nisin led to a significant decrease in the composite films' transparency, moisture content, and total soluble matter (TSM). The ultrasound treatment significantly increased the elongation at break and transparency of Nis@Op/Pul film by 18.37% and 8.03% and decreased its TSM and OP by 8.33% and 2.78%, respectively, compared to the conventional method. The structure analysis shows ultrasound enhances intermolecular hydrogen bonding, reduces the crystallinity and formed a more regular, uniform surface. Moreover, the Nis@Op/Pul film prepared by ultrasound treatment could effectively delay the decay and deterioration of fresh strawberries and prolong their shelf life.


Subject(s)
Nisin , Nisin/chemistry , Avena , Steam/analysis , Ultrasonics , Food Packaging , Permeability , Oxygen/analysis
15.
Ultrason Sonochem ; 92: 106242, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36459903

ABSTRACT

A novel food packaging film was developed by incorporating a tea polyphenols-loaded pullulan/trehalose (TP@Pul/Tre) into a composite film with ultrasound-assisted treatment of dual-frequency (20/35 kHz, 40 W/L) for 15 min to assess the physicochemical and mechanical properties of a composite film. The optimized ultrasound-assisted significantly increases elongation at break, tensile strength, and improves the composite film's UV/water/oxygen barrier properties. Structure analysis using attenuated total reflectance-Fourier transform infrared, X-ray diffraction and thermal stability revealed that these improvements were achieved through ultrasound-enhanced H-bonds, more ordered molecular arrangements, and good intermolecular compatibility. Besides, the ultrasound-assisted TP@Pul/Tre film has proven to have good antibacterial performance against Escherichia coli and Staphylococcus aureus, with approximately 100 % lethality at 4 h and 8 h, respectively. Moreover, the ultrasound-assisted TP@Pul/Tre film effectively delayed moisture loss, oxidative browning, decay, and deterioration in fresh-cut apples and pears, thereby extending their shelf life. Thus, ultrasound has proved to be an effective tool for improving the quality of food packaging films, with a wide range of applications.


Subject(s)
Fruit , Trehalose , Polyphenols/pharmacology , Glucans/pharmacology , Glucans/chemistry
16.
Food Chem ; 422: 136254, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37141752

ABSTRACT

Ultrasound is a high-energy approach that can help with homogenization and dispersion in cavitation. In this study, nanoemulsions of curcumin and orange essential oil were prepared with ultrasound treatment at different times. The ultrasound-treated nanoemulsions for 10 min exhibited the smallest droplet size, the best storage, and higher thermal stability. The pullulan-based film with ultrasound-assisted nanoemulsions exhibited improved water vapor permeability and moisture content and the highest tensile strength and elongation at break. The structural analysis showed that ultrasonic treatment enhanced the H-bond, resulting in a more orderly molecular arrangement and intermolecular compatibility. Furthermore, the bioactive film had the maximum oil retention time. It possessed excellent bacteriostatic properties against Escherichia coli and Staphylococcus aureus due to the smallest oil droplets and uniform distribution in the film matrix. Besides, the weight loss and deterioration of the strawberry fruit were effectively reduced, thus prolonging the shelf life.


Subject(s)
Fragaria , Oils, Volatile , Oils, Volatile/pharmacology , Oils, Volatile/analysis , Fruit/chemistry , Glucans/chemistry , Escherichia coli
17.
Int J Biol Macromol ; 245: 125457, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37331532

ABSTRACT

The current research investigated the multi-scale structural interactions between arrowhead starch (AS) and phenolic acids, such as ferulic acid (FA) and gallic acid (GA) to identify the mechanism of anti-digestion effects of starch. AS suspensions containing 10 % (w/w) GA or FA were subjected to physical mixing (PM) followed by heat treatment at 70 °C for 20 min (HT) and a synergistic heat-ultrasound treatment (HUT) for 20 min using a dual-frequency 20/40 KHz system. The synergistic HUT significantly (p < 0.05) increased the dispersion of phenolic acids in the amylose cavity, with GA showing a higher complexation index than FA. XRD analysis showed a typical V-type pattern for GA, indicating the formation of an inclusion complex, while peak intensities decreased for FA following HT and HUT. FTIR revealed sharper peaks possibly of amide bands in the ASGA-HUT sample compared to that of ASFA-HUT. Additionally, the emergence of cracks, fissures, and ruptures was more pronounced in the HUT-treated GA and FA complexes. Raman spectroscopy provided further insight into the structural attributes and compositional changes within the sample matrix. The synergistic application of HUT led to increased particle size in the form of complex aggregates, ultimately improving the digestion resistance of the starch-phenolic acid complexes.

18.
Front Genet ; 14: 1158028, 2023.
Article in English | MEDLINE | ID: mdl-37303955

ABSTRACT

Background: Genetic and environmental factors contribute to migraine and the comorbidities of anxiety and depression. However, the association between genetic polymorphisms in the transient receptor potential (TRP) channels and glutamatergic synapse genes with the risk of migraine and the comorbidities of anxiety and depression remain unclear. Methods: 251 migraine patients containing 49 comorbidities with anxiety and 112 with depression and 600 controls were recruited. A customized 48-plex SNPscan kit was used for genotyping 13 SNPs of nine target genes. Logistic regression was conducted to analyze these SNPs' association with the susceptibility of migraine and comorbidities. The generalized multifactor dimension reduction (GMDR) was applied to analyze the SNP-SNP and gene-environment interactions. The GTEx database was used to examine the effects of the significant SNPs on gene expressions. Results: The TRPV1 rs8065080 and TRPV3 rs7217270 were associated with an increased risk of migraine in the dominant model [ORadj (95% CI): 1.75 (1.09-2.90), p = 0.025; 1.63 (1.02-2.58), p = 0.039, respectively]. GRIK2 rs2227283 was associated with migraine in the edge of significance [ORadj (95% CI) = 1.36 (0.99-1.89), p = 0.062]. In migraine patients, TRPV1 rs222741 was associated with both anxiety risk and depression risk in the recessive model [ORadj (95% CI): 2.64 (1.24-5.73), p = 0.012; 1.97 (1.02-3.85), p = 0.046, respectively]. TRPM8 rs7577262 was associated with anxiety (ORadj = 0.27, 95% CI = 0.10-0.76, p = 0.011). TRPV4 rs3742037, TRPM8 rs17862920 and SLC17A8 rs11110359 were associated with depression in dominant model [ORadj (95% CI): 2.03 (1.06-3.96), p = 0.035; 0.48 (0.23-0.96), p = 0.042; 0.42 (0.20-0.84), p = 0.016, respectively]. Significant eQTL and sQTL signals were observed for SNP rs8065080. Individuals with GRS (Genetic risk scores) of Q4 (14-17) had a higher risk of migraine and a lower risk of comorbidity anxiety than those with Genetic risk scores scores of Q1 (0-9) groups [ORadj (95% CI): 2.31 (1.39-3.86), p = 0.001; 0.28 (0.08-0.88), p = 0.034, respectively]. Conclusion: This study suggests that TRPV1 rs8065080, TRPV3 rs7217270, and GRIK2 rs2227283 polymorphism may associate with migraine risk. TRPV1 rs222741 and TRPM8 rs7577262 may associate with migraine comorbidity anxiety risk. rs222741, rs3742037, rs17862920, and rs11110359 may associate with migraine comorbidity depression risk. Higher GRS scores may increase migraine risk and decrease comorbidity anxiety risk.

19.
Foods ; 12(21)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37959110

ABSTRACT

Producing starch gels with superior mechanical attributes remains a challenging pursuit. This research sought to develop a simple method using ethanol exposure to produce robust starch gels. The gels' mechanical properties, rheology, structural characteristics, and digestion were assessed through textural, rheological, structural, and in vitro digestion analyses. Our investigation revealed an improvement in the gel's strength from 62.22 to178.82 g. The thermal transitions were accelerated when ethanol was elevated. The exposure to ethanol resulted in a reduction in syneresis from 11% to 9.5% over a period of 6 h, with noticeable changes in size and color. Rheologically, the dominating storage modulus and tan delta (<0.55) emphasized the gel's improved elasticity. X-ray analysis showed stable B- and V-type patterns after ethanol exposure, with relative crystallinity increasing to 7.9%. Digestibility revealed an ethanol-induced resistance, with resistant starch increasing from 1.87 to 8.73%. In general, the exposure to ethanol played a crucial role in enhancing the mechanical characteristics of kudzu starch gels while simultaneously preserving higher levels of resistant starch fractions. These findings have wide-ranging implications in the fields of confectioneries, desserts, beverages, and pharmaceuticals, underscoring the extensive academic and industrial importance of this study.

20.
Mol Syst Biol ; 7: 536, 2011 10 11.
Article in English | MEDLINE | ID: mdl-21988832

ABSTRACT

Proteome-scale protein interaction maps are available for many organisms, ranging from bacteria, yeast, worms and flies to humans. These maps provide substantial new insights into systems biology, disease research and drug discovery. However, only a small fraction of the total number of human protein-protein interactions has been identified. In this study, we map the interactions of an unbiased selection of 5026 human liver expression proteins by yeast two-hybrid technology and establish a human liver protein interaction network (HLPN) composed of 3484 interactions among 2582 proteins. The data set has a validation rate of over 72% as determined by three independent biochemical or cellular assays. The network includes metabolic enzymes and liver-specific, liver-phenotype and liver-disease proteins that are individually critical for the maintenance of liver functions. The liver enriched proteins had significantly different topological properties and increased our understanding of the functional relationships among proteins in a liver-specific manner. Our data represent the first comprehensive description of a HLPN, which could be a valuable tool for understanding the functioning of the protein interaction network of the human liver.


Subject(s)
Liver , Protein Interaction Mapping , Protein Interaction Maps , Proteome/metabolism , Proteomics/methods , Saccharomyces cerevisiae/metabolism , Systems Biology , Databases, Protein , Gene Silencing/drug effects , Genes, Reporter , HEK293 Cells , Humans , Immunoprecipitation , Liver/metabolism , Luciferases/analysis , Open Reading Frames , Plasmids , Proteins/genetics , Proteins/metabolism , Proteome/genetics , RNA, Small Interfering/pharmacology , Saccharomyces cerevisiae/genetics , Transfection , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL