Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Neuroimage ; 178: 318-331, 2018 09.
Article in English | MEDLINE | ID: mdl-29787865

ABSTRACT

Diffusion magnetic resonance imaging (dMRI) is an important method for studying white matter connectivity in the brain in vivo in both healthy and clinical populations. Improvements in dMRI tractography algorithms, which reconstruct macroscopic three-dimensional white matter fiber pathways, have allowed for methodological advances in the study of white matter; however, insufficient attention has been paid to comparing post-tractography methods that extract white matter fiber tracts of interest from whole-brain tractography. Here we conduct a comparison of three representative and conceptually distinct approaches to fiber tract delineation: 1) a manual multiple region of interest-based approach, 2) an atlas-based approach, and 3) a groupwise fiber clustering approach, by employing methods that exemplify these approaches to delineate the arcuate fasciculus, the middle longitudinal fasciculus, and the uncinate fasciculus in 10 healthy male subjects. We enable qualitative comparisons across methods, conduct quantitative evaluations of tract volume, tract length, mean fractional anisotropy, and true positive and true negative rates, and report measures of intra-method and inter-method agreement. We discuss methodological similarities and differences between the three approaches and the major advantages and drawbacks of each, and review research and clinical contexts for which each method may be most apposite. Emphasis is given to the means by which different white matter fiber tract delineation approaches may systematically produce variable results, despite utilizing the same input tractography and reliance on similar anatomical knowledge.


Subject(s)
Brain Mapping/methods , Brain/anatomy & histology , Image Processing, Computer-Assisted/methods , White Matter/anatomy & histology , Diffusion Tensor Imaging/methods , Humans , Male
2.
Brain Imaging Behav ; 18(3): 555-565, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38270836

ABSTRACT

On average, healthy older adults prefer positive over neutral or negative stimuli. This positivity bias is related to memory and attention processes and is linked to the function and structure of several interconnected brain areas. However, the relationship between the positivity bias and white matter integrity remains elusive. The present study examines how white matter organization relates to the degree of the positivity bias among older adults. We collected imaging and behavioral data from 25 individuals (12 females, 13 males, and a mean age of 77.32). Based on a functional memory task, we calculated a Pos-Neg score, reflecting the memory for positively valenced information over negative information, and a Pos-Neu score, reflecting the memory for positively valenced information over neutral information. Diffusion-weighted magnetic resonance imaging data were processed using Tract-Based Spatial Statistics. We performed two non-parametric permutation tests to correlate whole brain white matter integrity and the Pos-Neg and Pos-Neu scores while controlling for age, sex, and years of education. We observed a statistically significant positive association between the Pos-Neu score and white matter integrity in multiple brain connections, mostly frontal. The results did not remain significant when including verbal episodic memory as an additional covariate. Our study indicates that the positivity bias in memory in older adults is associated with more organized white matter in the connections of the frontal brain. While these frontal areas are critical for memory and executive processes and have been related to pathological aging, more extensive studies are needed to fully understand their role in the positivity bias and the potential for therapeutic interventions.


Subject(s)
Brain , White Matter , Humans , Male , Female , Aged , White Matter/diagnostic imaging , Brain/diagnostic imaging , Aged, 80 and over , Aging/physiology , Memory/physiology , Diffusion Magnetic Resonance Imaging/methods , Neuropsychological Tests , Emotions/physiology , Attention/physiology , Neural Pathways/diagnostic imaging , Diffusion Tensor Imaging/methods
3.
Cortex ; 132: 322-333, 2020 11.
Article in English | MEDLINE | ID: mdl-33011518

ABSTRACT

Hand gestures are an integral part of social interactions and communication. Several imaging studies in healthy subjects and lesion studies in patients with apraxia suggest the praxis network for gesture production, involving mainly left inferior frontal, posterior parietal and temporal regions. However, little is known about the structural connectivity underlying gesture production. We recruited 41 healthy participants and 39 patients with schizophrenia. All participants performed a gesture production test, the Test of Upper Limb Apraxia, and underwent diffusion tensor imaging. We hypothesized that gesture production is associated with structural network connectivity as well as with tract integrity. We defined the praxis network as an undirected graph comprised of 13 bilateral regions of interest and derived measures of local and global structural connectivity and tract integrity from Finsler geometry. We found an association of gesture deficit with reduced global and local efficiency of the praxis network. Furthermore, reduced tract integrity, for example in the superior longitudinal fascicle, arcuate fascicle or corpus callosum were related to gesture deficits. Our findings contribute to the understanding of structural correlates of gesture production as they first present diffusion tensor imaging data in a combined sample of healthy subjects and a patient cohort with gestural deficits.


Subject(s)
Gestures , Schizophrenia , Diffusion Tensor Imaging , Healthy Volunteers , Humans , Nerve Net/diagnostic imaging , Schizophrenia/diagnostic imaging
4.
Brain Imaging Behav ; 14(4): 981-997, 2020 Aug.
Article in English | MEDLINE | ID: mdl-31041662

ABSTRACT

Studies using diffusion tensor imaging (DTI) have documented alterations in the attention and executive system in children and adolescents with attention-deficit/hyperactivity disorder (ADHD). While abnormalities in the frontal lobe have also been reported, the associated white matter fiber bundles have not been investigated comprehensively due to the complexity in tracing them through fiber crossings. Furthermore, most studies have used a non-specific DTI model to understand white matter abnormalities. We present results from a first study that uses a multi-shell diffusion MRI (dMRI) data set coupled with an advanced multi-fiber tractography algorithm to probe microstructural measures related to axonal/cellular density and volume of fronto-striato-thalamic pathways in children with ADHD (N = 30) and healthy controls (N = 28). Head motion was firstly examined as a priority in order to assure that no group difference existed. We investigated 45 different white matter fiber bundles in the brain. After correcting for multiple comparisons, we found lower axonal/cellular packing density and volume in ADHD children in 8 of the 45 fiber bundles, primarily in the right hemisphere as follows: 1) Superior longitudinal fasciculus-II (SLF-II) (right), 2) Thalamus to precentral gyrus (right), 3) Thalamus to superior-frontal gyrus (right), 4) Caudate to medial orbitofrontal gyrus (right), 5) Caudate to precentral gyrus (right), 6) Thalamus to paracentral gyrus (left), 7) Caudate to caudal middlefrontal gyrus (left), and 8) Cingulum (bilateral). Our results demonstrate reduced axonal/cellular density and volume in certain frontal lobe white matter fiber tracts, which sub-serve the attention function and executive control systems. Further, our work shows specific microstructural abnormalities in the striato-thalamo-cortical connections, which have not been previously reported in children with ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity , White Matter , Adolescent , Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Child , Diffusion Tensor Imaging , Humans , Magnetic Resonance Imaging , Neural Pathways/diagnostic imaging , White Matter/diagnostic imaging
5.
Brain Imaging Behav ; 14(5): 1419-1429, 2020 Oct.
Article in English | MEDLINE | ID: mdl-30848432

ABSTRACT

The long-term neurologic consequences of exposure to repetitive head impacts (RHI) are not well understood. This study used magnetic resonance spectroscopy (MRS) to examine later-life neurochemistry and its association with RHI and clinical function in former National Football League (NFL) players. The sample included 77 symptomatic former NFL players and 23 asymptomatic individuals without a head trauma history. Participants completed cognitive, behavior, and mood measures. N-acetyl aspartate, glutamate/glutamine, choline, myo-inositol, creatine, and glutathione were measured in the posterior (PCG) and anterior (ACG) cingulate gyrus, and parietal white matter (PWM). A cumulative head impact index (CHII) estimated RHI. In former NFL players, a higher CHII correlated with lower PWM creatine (r = -0.23, p = 0.02). Multivariate mixed-effect models examined neurochemical differences between the former NFL players and asymptomatic individuals without a history of head trauma. PWM N-acetyl aspartate was lower among the former NFL players (mean diff. = 1.02, p = 0.03). Between-group analyses are preliminary as groups were recruited based on symptomatic status. The ACG was the only region associated with clinical function, including positive correlations between glutamate (r = 0.32, p = 0.004), glutathione (r = 0.29, p = 0.02), and myo-inositol (r = 0.26, p = 0.01) with behavioral/mood symptoms. Other positive correlations between ACG neurochemistry and clinical function emerged (i.e., behavioral/mood symptoms, cognition), but the positive directionality was unexpected. All analyses controlled for age, body mass index, and education (for analyses examining clinical function). In this sample of symptomatic former NFL players, there was a direct effect between RHI and reduced cellular energy metabolism (i.e., lower creatine). MRS neurochemicals associated with neuroinflammation also correlated with behavioral/mood symptoms.


Subject(s)
Football , Soccer , White Matter , Humans , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy
6.
Neuroimage Clin ; 17: 213-221, 2018.
Article in English | MEDLINE | ID: mdl-29159038

ABSTRACT

Schizophrenia is characterized by deficits in gesturing that is important for nonverbal communication. Research in healthy participants and brain-damaged patients revealed a left-lateralized fronto-parieto-temporal network underlying gesture performance. First evidence from structural imaging studies in schizophrenia corroborates these results. However, as of yet, it is unclear if cortical thickness abnormalities contribute to impairments in gesture performance. We hypothesized that patients with deficits in gesture production show cortical thinning in 12 regions of interest (ROIs) of a gesture network relevant for gesture performance and recognition. Forty patients with schizophrenia and 41 healthy controls performed hand and finger gestures as either imitation or pantomime. Group differences in cortical thickness between patients with deficits, patients without deficits, and controls were explored using a multivariate analysis of covariance. In addition, the relationship between gesture recognition and cortical thickness was investigated. Patients with deficits in gesture production had reduced cortical thickness in eight ROIs, including the pars opercularis of the inferior frontal gyrus, the superior and inferior parietal lobes, and the superior and middle temporal gyri. Gesture recognition correlated with cortical thickness in fewer, but mainly the same, ROIs within the patient sample. In conclusion, our results show that impaired gesture production and recognition in schizophrenia is associated with cortical thinning in distinct areas of the gesture network.


Subject(s)
Cerebral Cortex/pathology , Gestures , Schizophrenia/pathology , Schizophrenic Psychology , Adult , Cerebral Cortex/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Pattern Recognition, Visual , Schizophrenia/diagnostic imaging
7.
Neuroimage Clin ; 19: 98-105, 2018.
Article in English | MEDLINE | ID: mdl-30035007

ABSTRACT

Background: The mesocorticolimbic system is particularly susceptible to the effects of chronic alcoholism. Disruption of this system has been linked to drug seeking and the development of Reward Deficiency Syndrome, a neurobiological framework for describing the development and relapsing patterns of addictions. In this study, we evaluated the association of alcoholism and sex with major connections of the medial forebrain bundle (MFB), a prominent mesocorticolimbic fiber pathway connecting the ventral tegmental area with the basal forebrain. Given sex differences in clinical consequences of alcohol consumption, we hypothesized that alcoholic men and women would differ in structural abnormalities of the MFB. Methods: Diffusion magnetic resonance imaging (dMRI) data were acquired from 30 abstinent long-term alcoholic individuals (ALC; 9 men) and 25 non-alcoholic controls (NC; 8 men). Major connections of the MFB were extracted using multi-tensor tractography. We compared groups on MFB volume, fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD), with hemisphere and sex as independent variables. We also evaluated associations between abnormal structural measures and drinking measures. Results: Analyses revealed significant group-by-sex interactions for FA and RD: while ALC men had lower FA and higher RD compared to NC men, ALC women had higher FA and lower RD compared to NC women. We also detected a significant negative association between FA and number of daily drinks in ALC women. Conclusion: Alcoholism is associated with sexually dimorphic structural abnormalities in the MFB. The results expand upon other findings of differences in brain reward circuitry of alcoholic men and women.


Subject(s)
Alcohol Drinking/pathology , Alcoholism/pathology , Medial Forebrain Bundle/pathology , Sex Characteristics , Adult , Aged , Aged, 80 and over , Anisotropy , Basal Forebrain/pathology , Diffusion Magnetic Resonance Imaging/methods , Diffusion Tensor Imaging/methods , Female , Humans , Male , Middle Aged , White Matter/pathology
8.
Brain Imaging Behav ; 12(1): 229-237, 2018 02.
Article in English | MEDLINE | ID: mdl-28247157

ABSTRACT

In schizophrenia, abnormalities in structural connectivity between brain regions known to contain mirror neurons and their relationship to negative symptoms related to a domain of social cognition are not well understood. Diffusion tensor imaging (DTI) scans were acquired in 16 patients with first episode schizophrenia and 16 matched healthy controls. FA and Trace of the tracts interconnecting regions known to be rich in mirror neurons, i.e., anterior cingulate cortex (ACC), inferior parietal lobe (IPL) and premotor cortex (PMC) were evaluated. A significant group effect for Trace was observed in IPL-PMC white matter fiber tract (F (1, 28) = 7.13, p = .012), as well as in the PMC-ACC white matter fiber tract (F (1, 28) = 4.64, p = .040). There were no group differences in FA. In addition, patients with schizophrenia showed a significant positive correlation between the Trace of the left IPL-PMC white matter fiber tract, and the Ability to Feel Intimacy and Closeness score (rho = .57, p = 0.034), and a negative correlation between the Trace of the left PMC-ACC and the Relationships with Friends and Peers score (rho = remove -.54, p = 0.049). We have demonstrated disrupted white mater microstructure within the white matter tracts subserving brain regions containing mirror neurons. We further showed that such structural disruptions might impact negative symptoms and, more specifically, contribute to the inability to feel intimacy (a measure conceptually related to theory of mind) in first episode schizophrenia. Further studies are needed to understand the potential of our results for diagnosis, prognosis and therapeutic interventions.


Subject(s)
Brain/diagnostic imaging , Cognition , Schizophrenia/diagnostic imaging , Schizophrenic Psychology , Social Perception , White Matter/diagnostic imaging , Acute Disease , Diffusion Tensor Imaging , Female , Humans , Magnetic Resonance Imaging , Male , Mirror Neurons , Neural Pathways/diagnostic imaging , Neuropsychological Tests , Regression Analysis , Schizophrenia/drug therapy , Socioeconomic Factors , Young Adult
9.
Neuroimage Clin ; 18: 888-896, 2018.
Article in English | MEDLINE | ID: mdl-29876273

ABSTRACT

Objectives: To determine whether or not automated FreeSurfer segmentation of brain regions considered important in repetitive head trauma can be analyzed accurately without manual correction. Materials and methods: 3 T MR neuroimaging was performed with automated FreeSurfer segmentation and manual correction of 11 brain regions in former National Football League (NFL) players with neurobehavioral symptoms and in control subjects. Automated segmentation and manually-corrected volumes were compared using an intraclass correlation coefficient (ICC). Linear mixed effects regression models were also used to estimate between-group mean volume comparisons and to correlate former NFL player brain volumes with neurobehavioral factors. Results: Eighty-six former NFL players (55.2 ±â€¯8.0 years) and 22 control subjects (57.0 ±â€¯6.6 years) were evaluated. ICC was highly correlated between automated and manually-corrected corpus callosum volumes (0.911), lateral ventricular volumes (right 0.980, left 0.967), and amygdala-hippocampal complex volumes (right 0.713, left 0.731), but less correlated when amygdalae (right -0.170, left -0.090) and hippocampi (right 0.539, left 0.637) volumes were separately delineated and also less correlated for cingulate gyri volumes (right 0.639, left 0.351). Statistically significant differences between former NFL player and controls were identified in 8 of 11 regions with manual correction but in only 4 of 11 regions without such correction. Within NFL players, manually corrected brain volumes were significantly associated with 3 neurobehavioral factors, but a different set of 3 brain regions and neurobehavioral factor correlations was observed for brain region volumes segmented without manual correction. Conclusions: Automated FreeSurfer segmentation of the corpus callosum, lateral ventricles, and amygdala-hippocampus complex may be appropriate for analysis without manual correction. However, FreeSurfer segmentation of the amygdala, hippocampus, and cingulate gyrus need further manual correction prior to performing group comparisons and correlations with neurobehavioral measures.


Subject(s)
Amygdala/pathology , Hippocampus/pathology , Image Processing, Computer-Assisted , Neuroimaging , Organ Size/physiology , Adult , Aged , Brain Mapping , Football , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Male , Middle Aged , Neuroimaging/methods
10.
Brain Imaging Behav ; 12(1): 284-295, 2018 02.
Article in English | MEDLINE | ID: mdl-28176263

ABSTRACT

Diffusion MRI (dMRI) data acquired on different scanners varies significantly in its content throughout the brain even if the acquisition parameters are nearly identical. Thus, proper harmonization of such data sets is necessary to increase the sample size and thereby the statistical power of neuroimaging studies. In this paper, we present a novel approach to harmonize dMRI data (the raw signal, instead of dMRI derived measures such as fractional anisotropy) using rotation invariant spherical harmonic (RISH) features embedded within a multi-modal image registration framework. All dMRI data sets from all sites are registered to a common template and voxel-wise differences in RISH features between sites at a group level are used to harmonize the signal in a subject-specific manner. We validate our method on diffusion data acquired from seven different sites (two GE, three Philips, and two Siemens scanners) on a group of age-matched healthy subjects. We demonstrate the efficacy of our method by statistically comparing diffusion measures such as fractional anisotropy, mean diffusivity and generalized fractional anisotropy across these sites before and after data harmonization. Validation was also done on a group oftest subjects, which were not used to "learn" the harmonization parameters. We also show results using TBSS before and after harmonization for independent validation of the proposed methodology. Using synthetic data, we show that any abnormality in diffusion measures due to disease is preserved during the harmonization process. Our experimental results demonstrate that, for nearly identical acquisition protocol across sites, scanner-specific differences in the signal can be removed using the proposed method in a model independent manner.


Subject(s)
Diffusion Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted/methods , Adult , Brain/diagnostic imaging , Brain/pathology , Computer Simulation , Diffusion Magnetic Resonance Imaging/instrumentation , Female , Humans , Male , Models, Neurological
SELECTION OF CITATIONS
SEARCH DETAIL