Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Dig Dis Sci ; 69(8): 2828-2840, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38849592

ABSTRACT

BACKGROUND: Leucine-rich repeat kinase 2 is a molecule that is responsible for familial Parkinson's disease. Our previous findings revealed that leucine-rich repeat kinase 2 is expressed in the enteric nervous system. However, which cells in the enteric nervous system express leucine-rich repeat kinase 2 and whether leucine-rich repeat kinase 2 is associated with the structure of the enteric nervous system remain unclear. The enteric nervous system is remarkable because some patients with Parkinson's disease experience gastrointestinal symptoms before developing motor symptoms. AIMS: We established a leucine-rich repeat kinase 2 reporter mouse model and performed immunostaining in leucine-rich repeat kinase 2 knockout mice. METHODS: Longitudinal muscle containing the myenteric plexus prepared from leucine-rich repeat kinase 2 reporter mice was analyzed by immunostaining using anti-green fluorescent protein (GFP) antibody. Immunostaining using several combinations of antibodies characterizing enteric neurons and glial cells was performed on intestinal preparations from leucine-rich repeat kinase 2 knockout mice. RESULTS: GFP expression in the reporter mice was predominantly in enteric glial cells rather than in enteric neurons. Immunostaining revealed that differences in the structure and proportion of major immunophenotypic cells were not apparent in the knockout mice. Interestingly, the number of biphenotypic cells expressing the neuronal and glial cell markers increased in the leucine-rich repeat kinase 2 knockout mice. Moreover, there was accumulation of α-synuclein in the knockout mice. CONCLUSIONS: Our present findings suggest that leucine-rich repeat kinase 2 is a newly recognized molecule that potentially regulates the integrity of enteric nervous system and enteric α-synuclein accumulation.


Subject(s)
Enteric Nervous System , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Mice, Knockout , Neurons , alpha-Synuclein , Animals , Mice , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Enteric Nervous System/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Myenteric Plexus/metabolism , Neuroglia/metabolism , Neurons/metabolism , Phenotype
2.
Biol Pharm Bull ; 46(1): 123-127, 2023.
Article in English | MEDLINE | ID: mdl-36596520

ABSTRACT

Mutations in leucine rich-repeat kinase 2 (LRRK2) cause autosomal-dominant, late-onset Parkinson's disease (PD). Accumulating evidence indicates that PD-associated LRRK2 mutations induce neuronal cell death by increasing cellular reactive oxygen species levels. However, the mechanism of increased oxidative stress associated with LRRK2 kinase activity remains unclear. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that protects cells from oxidative stress by inducing the expression of antioxidant genes. In the present, it was found that decreased expression of Nrf2 and mRNA expression of its target genes in Lrrk2-transgenic mouse brain and LRRK2 overexpressing SH-SY5Y cells. Furthermore, knockdown of glycogen synthase kinase-3ß (GSK-3ß) recovered Nrf2 expression and mRNA expression of its target genes in LRRK2 overexpressing SH-SY5Y cells. We concluded that since Nrf2 is transcriptional factor for antioxidative responses, therefore, reduction of Nrf2 expression by LRRK2 may be part of a mechanism that LRRK2-induces vulnerability to oxidative stress in neuronal cells.


Subject(s)
NF-E2-Related Factor 2 , Neuroblastoma , Mice , Animals , Humans , Mice, Transgenic , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Neuroblastoma/metabolism , Brain/metabolism , Antioxidants/metabolism , RNA, Messenger/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism
3.
Int J Mol Sci ; 24(19)2023 Oct 07.
Article in English | MEDLINE | ID: mdl-37834420

ABSTRACT

Non-steroidal anti-inflammatory drugs (NSAIDs), which are antipyretics and analgesics, cause gastrointestinal disorders, such as inflammation and ulcers. To prescribe NSAIDs more safely, it is important to clarify the mechanism of NSAID-induced gastrointestinal mucosal injury. However, there is a paucity of studies on small intestinal mucosal damage by NSAIDs, and it is currently unknown whether inflammation and ulceration also occur in the small intestine, and whether mediators are involved in the mechanism of injury. Therefore, in this study, we created an animal model in which small intestinal mucosal injury was induced using NSAIDs (indomethacin; IDM). Focusing on the dynamics of immune regulatory factors related to the injury, we aimed to elucidate the pathophysiological mechanism involved. We analyzed the pathological changes in the small intestine, the expression of immunoregulatory factors (cytokines), and identified cytokine secretion and expression cells from isolated lamina propria mononuclear cells (LPMCs). Ulcers were formed in the small intestine by administering IDM. Although the mRNA expression levels of IL-1ß, IL-6, and TNFα were decreased on day 7 after IDM administration, IL-13 mRNA levels increased from day 3 after IDM administration and remained high even on day 7. The IL-13 mRNA expression and the secretion of IL-13 were increased in small intestinal LPMCs isolated from the IDM-treated group. In addition, we confirmed that IL-13 was expressed in CD4-positive T cells. These results provided new evidence that IL-13 production from CD4-positive T cells in the lamina propria of the small intestine contributes to NSAID-induced mucosal injury.


Subject(s)
Interleukin-13 , Ulcer , Animals , Interleukin-13/genetics , Interleukin-13/metabolism , Ulcer/metabolism , Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Intestine, Small/metabolism , Intestinal Mucosa/metabolism , Immunologic Factors/metabolism , Inflammation/metabolism , RNA, Messenger/metabolism
4.
Mol Cell Biochem ; 477(3): 689-699, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34973124

ABSTRACT

Bardoxolone methyl [methyl-2-cyano-3, 12-dioxooleana-1, 9(11)dien-28-oate (CDDO-Me)], an activator of the nuclear factor erythroid-derived 2-related factor2 pathway, is a potential therapeutic candidate for the treatment of kidney diseases. However, its effect against cellular senescence remains unclear. This study aimed to investigate whether CDDO-Me protects cells against cisplatin-induced cellular senescence using an in vitro model. The human renal proximal tubular epithelial cell line HK-2 was treated with cisplatin for 6 h, followed by treatment with or without CDDO-Me (0.1 or 0.2 µmol/L). Senescence markers were analyzed using western blotting and real-time PCR. Apoptosis was evaluated through TUNEL staining. Cisplatin induced changes in the levels of markers specific for proliferation, cell cycle, and senescence in a time- and dose-dependent manner. Furthermore, IL-6 and IL-8 levels in the culture medium increased markedly. These data suggested that cellular senescence-like alterations occurred in HK-2 cells exposed to cisplatin. CDDO-Me treatment reversed the cisplatin-mediated alterations in the levels of cellular senescence markers. The antioxidant enzymes, HO1, NQO1, GPX1, and CAT were upregulated by CDDO-Me treatment. Furthermore, CDDO-Me treatment induced apoptosis in cisplatin-exposed HK-2 cells. Pretreatment with Ac-DEVD-CHO, the caspase inhibitor, suppressed the reversal effect of CDDO-Me against cisplatin-induced cellular senescence-like alterations. This study showed that CDDO-Me attenuated cisplatin-induced premature senescence of HK-2 cells. This beneficial effect may be related to Nrf2 activation. Our findings also showed that CDDO-Me induced apoptosis in cisplatin-treated HK-2 cells, potentially protecting the kidneys from cellular senescence. CDDO-Me appears to be a candidate treatment for acute kidney injury.


Subject(s)
Cellular Senescence/drug effects , Cisplatin/pharmacology , Kidney Tubules, Proximal/metabolism , Oleanolic Acid/analogs & derivatives , Cell Line , Humans , Oleanolic Acid/pharmacology
5.
Int J Mol Sci ; 23(2)2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35054842

ABSTRACT

Tris (2-butoxyethyl) phosphate (TBEP) is an organophosphate flame retardant and used as a plasticizer in various household products such as plastics, floor polish, varnish, textiles, furniture, and electronic equipment. However, little is known about the effects of TBEP on the brain and behavior. We aimed to examine the effects of dietary exposure of TBEP on memory functions, their-related genes, and inflammatory molecular markers in the brain of allergic asthmatic mouse models. C3H/HeJSlc male mice were given diet containing TBEP (0.02 (TBEP-L), 0.2 (TBEP-M), or 2 (TBEP-H) µg/kg/day) and ovalbumin (OVA) intratracheally every other week from 5 to 11 weeks old. A novel object recognition test was conducted in each mouse at 11 weeks old. The hippocampi were collected to detect neurological, glia, and immunological molecular markers using the real-time RT-PCR method and immunohistochemical analyses. Mast cells and microglia were examined by toluidine blue staining and ionized calcium-binding adapter molecule (Iba)-1 immunoreactivity, respectively. Impaired discrimination ability was observed in TBEP-H-exposed mice with or without allergen. The mRNA expression levels of N-methyl-D aspartate receptor subunits Nr1 and Nr2b, inflammatory molecular markers tumor necrosis factor-α oxidative stress marker heme oxygenase 1, microglia marker Iba1, and astrocyte marker glial fibrillary acidic protein were significantly increased in TBEP-H-exposed mice with or without allergen. Microglia and mast cells activation were remarkable in TBEP-H-exposed allergic asthmatic mice. Our results indicate that chronic exposure to TBEP with or without allergen impaired object recognition ability accompanied with alteration of molecular expression of neuronal and glial markers and inflammatory markers in the hippocampus of mice. Neuron-glia-mast cells interaction may play a role in TBEP-induced neurobehavioral toxicity.


Subject(s)
Asthma/psychology , Flame Retardants/adverse effects , Organophosphorus Compounds/adverse effects , Ovalbumin/adverse effects , Animals , Asthma/etiology , Asthma/genetics , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Dietary Exposure/adverse effects , Disease Models, Animal , Gene Expression Regulation/drug effects , Male , Mast Cells/metabolism , Memory/drug effects , Mice , Mice, Inbred C3H , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Microglia/metabolism , Nerve Tissue Proteins/genetics , Ovalbumin/immunology , Oxidative Stress/drug effects , Receptors, N-Methyl-D-Aspartate/genetics
6.
Biol Pharm Bull ; 43(11): 1660-1668, 2020.
Article in English | MEDLINE | ID: mdl-33132310

ABSTRACT

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are associated with Parkinson's disease. LRRK2 is a large protein with multiple functional domains, including a guanosine 5'-triphosphate (GTP)-binding domain and a protein kinase domain. Recent studies indicated that the members of the Rab GTPase family, Rab8a and Rab10, which are involved in the membrane transport of the glucose transporter type 4 (GLUT4) during insulin-dependent glucose uptake, are phosphorylated by LRRK2. However, the physiological role of LRRK2 in the regulation of glucose metabolism is largely unknown. In the present study, we investigated the role of LRRK2 using dexamethasone (DEX)-induced glucose intolerance in mice. LRRK2 knockout (KO) mice exhibited suppressed glucose intolerance, even after treatment with DEX. The phosphorylation of LRRK2, Rab8a and Rab10 was increased in the adipose tissues of DEX-treated wild-type mice. In addition, inhibition of the LRRK2 kinase activity prevented the DEX-induced inhibition of GLUT4 membrane translocation and glucose uptake in cultured 3T3-L1 adipocytes. These results suggest that LRRK2 plays an important role in glucose metabolism in adipose tissues.


Subject(s)
Adipose Tissue/metabolism , Dexamethasone/adverse effects , Glucose Intolerance/pathology , Glucose Transporter Type 4/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , 3T3-L1 Cells , Adipocytes/cytology , Adipocytes/drug effects , Adipocytes/metabolism , Adipose Tissue/cytology , Adipose Tissue/drug effects , Animals , Cell Membrane/drug effects , Cell Membrane/metabolism , Disease Models, Animal , Glucose/metabolism , Glucose Intolerance/chemically induced , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Male , Mice , Mice, Knockout , Phosphorylation/drug effects
7.
Int J Mol Sci ; 21(21)2020 Oct 31.
Article in English | MEDLINE | ID: mdl-33142910

ABSTRACT

Dysbiosis, an imbalance of intestinal flora, can cause serious conditions such as obesity, cancer, and psychoneurological disorders. One cause of dysbiosis is inflammation. Ulcerative enteritis is a side effect of non-steroidal anti-inflammatory drugs (NSAIDs). To counteract this side effect, we proposed the concurrent use of histamine H2 receptor antagonists (H2RA), and we examined the effect on the intestinal flora. We generated a murine model of NSAID-induced intestinal mucosal injury, and we administered oral H2RA to the mice. We collected stool samples, compared the composition of intestinal flora using terminal restriction fragment length polymorphism, and performed organic acid analysis using high-performance liquid chromatography. The intestinal flora analysis revealed that NSAID [indomethacin (IDM)] administration increased Erysipelotrichaceae and decreased Clostridiales but that both had improved with the concurrent administration of H2RA. Fecal levels of acetic, propionic, and n-butyric acids increased with IDM administration and decreased with the concurrent administration of H2RA. Although in NSAID-induced gastroenteritis the proportion of intestinal microorganisms changes, leading to the deterioration of the intestinal environment, concurrent administration of H2RA can normalize the intestinal flora.


Subject(s)
Dysbiosis/drug therapy , Histamine H2 Antagonists/pharmacology , Indomethacin/toxicity , Inflammation/drug therapy , Intestinal Mucosa/drug effects , Animals , Anti-Inflammatory Agents, Non-Steroidal/toxicity , Anti-Ulcer Agents/pharmacology , Dysbiosis/chemically induced , Dysbiosis/microbiology , Feces/microbiology , Inflammation/microbiology , Intestinal Mucosa/injuries , Intestinal Mucosa/microbiology , Male , Mice , Mice, Inbred BALB C , Pharmaceutical Preparations , Treatment Outcome
8.
Int J Mol Sci ; 21(5)2020 Mar 10.
Article in English | MEDLINE | ID: mdl-32164260

ABSTRACT

Leucine-rich repeat kinase 2 (LRRK2) is the causal molecule of familial Parkinson's disease. Although the characteristics of LRRK2 have gradually been revealed, its true physiological functions remain unknown. LRRK2 is highly expressed in immune cells such as B2 cells and macrophages, suggesting that it plays important roles in the immune system. In the present study, we investigate the roles of LRRK2 in the immune functions of dendritic cells (DCs). Bone marrow-derived DCs from both C57BL/6 wild-type (WT) and LRRK2 knockout (KO) mice were induced by culture with granulocyte/macrophage-colony stimulating factor (GM/CSF) in vitro. We observed the differentiation of DCs, the phosphorylation of the transcriptional factors NF-κB, Erk1/2, and p-38 after lipopolysaccharide (LPS) stimulation and antigen-presenting ability by flow cytometry. We also analyzed the production of inflammatory cytokines by ELISA. During the observation period, there was no difference in DC differentiation between WT and LRRK2-KO mice. After LPS stimulation, phosphorylation of NF-κB was significantly increased in DCs from the KO mice. Large amounts of inflammatory cytokines were produced by DCs from KO mice after both stimulation with LPS and infection with Leishmania. CD4+ T-cells isolated from antigen-immunized mice proliferated to a significantly greater degree upon coculture with antigen-stimulated DCs from KO mice than upon coculture with DCs from WT mice. These results suggest that LRRK2 may play important roles in signal transduction and antigen presentation by DCs.


Subject(s)
Bone Marrow Cells/cytology , Dendritic Cells/cytology , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Lipopolysaccharides/adverse effects , NF-kappa B/metabolism , Animals , Antigen Presentation , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , CD4-Positive T-Lymphocytes/metabolism , Cell Differentiation/drug effects , Cell Line , Cell Proliferation , Cytokines/metabolism , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation/drug effects
9.
Am J Physiol Renal Physiol ; 314(3): F462-F470, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29187367

ABSTRACT

Megalin, an endocytic receptor expressed in proximal tubule cells, plays a critical role in renal tubular protein reabsorption and is associated with the albuminuria observed in diabetic nephropathy. We have previously reported increased oxidant production in the renal cortex during the normoalbuminuric stage of diabetes mellitus (DM); however, the relationship between oxidative stress and renal megalin expression during the normoalbuminuric stage of DM remains unclear. In the present study, we evaluated whether oxidative stress affects megalin expression in the normoalbuminuric stage of DM in a streptozotocin-induced diabetic rat model and in immortalized human proximal tubular cells (HK-2). We demonstrated that increased expression of renal megalin accompanies oxidative stress during the early stage of DM, before albuminuria development. Telmisartan treatment prevented the diabetes-induced elevation in megalin level, possibly through an oxidative stress-dependent mechanism. In HK-2 cells, hydrogen peroxide significantly increased megalin levels in a dose- and time-dependent manner; however, the elevation in megalin expression was decreased following prolonged exposure to severe oxidative stress induced by 0.4 mmol/l hydrogen peroxide. High-glucose treatment also significantly increased megalin expression in HK-2 cells. Concurrent administration of the antioxidant N-acetyl-cysteine blocked the effects of high glucose on megalin expression. Furthermore, the hydrogen peroxide-induced increase in megalin expression was blocked by treatment with phosphatidylinositol 3-kinase and Akt inhibitors. Increase of phosphorylated Akt expression was also seen in the renal cortex of diabetic rats. Taken together, our results indicate that mild oxidative stress increases renal megalin expression through the phosphatidylinositol 3-kinase-Akt pathway in the normoalbuminuric stage of DM.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Kidney Tubules, Proximal/metabolism , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Oxidative Stress , Animals , Antioxidants/pharmacology , Cell Line , Diabetes Mellitus, Experimental/chemically induced , Dose-Response Relationship, Drug , Glucose/pharmacology , Humans , Hydrogen Peroxide/pharmacology , Kidney Tubules, Proximal/drug effects , Low Density Lipoprotein Receptor-Related Protein-2/genetics , Male , Oxidants/pharmacology , Oxidative Stress/drug effects , Phosphatidylinositol 3-Kinase/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects , Streptozocin , Telmisartan/pharmacology , Time Factors , Up-Regulation
10.
Biol Pharm Bull ; 41(5): 806-810, 2018.
Article in English | MEDLINE | ID: mdl-29709918

ABSTRACT

In this study, we examined the inhibitory effects of ferulic acid and caffeic acid on melanin production using a murine B16 melanoma cell line. The mechanisms by which the two acids inhibit melanin production were investigated by evaluating their effects on the activity of tyrosinase, which is involved is the first step of melanin biosynthesis. Ferulic acid showed no toxicity against the melanoma cells at any dose, whereas caffeic acid exerted cellular toxicity at concentrations higher than 0.35 mM. Both ferulic and caffeic acids effectively inhibited melanin production in the B16 melanoma cells. Ferulic acid reduced tyrosinase activity by directly binding to the enzyme, whereas no binding was observed between caffeic acid and tyrosinase. Both ferulic acid and caffeic acid inhibited casein kinase 2 (CK2)-induced phosphorylation of tyrosinase in a dose-dependent manner in vitro. Ferulic acid was found to be a more effective inhibitor of melanin production than caffeic acid; this difference in the inhibitory efficacy between the two substances could be attributable to the difference in their tyrosine-binding activity. Our analysis revealed that both substances also inhibited the CK2-mediated phosphorylation of tyrosinase.


Subject(s)
Caffeic Acids/pharmacology , Casein Kinase II/antagonists & inhibitors , Coumaric Acids/pharmacology , Melanins/antagonists & inhibitors , Melanoma, Experimental/metabolism , Monophenol Monooxygenase/metabolism , Animals , Benzoquinones/metabolism , Casein Kinase II/metabolism , Cell Line, Tumor , Dihydroxyphenylalanine/analogs & derivatives , Dihydroxyphenylalanine/metabolism , Melanins/metabolism , Mice , Phosphorylation/drug effects
11.
Dig Dis Sci ; 62(4): 903-912, 2017 04.
Article in English | MEDLINE | ID: mdl-28168579

ABSTRACT

BACKGROUND: Leucine-rich repeat kinase 2 (LRRK2) is a recently discovered molecule associated with familial and sporadic Parkinson's disease. It regulates many central neuronal functions such as cell proliferation, apoptosis, autophagy, and axonal extension. However, in contrast to the well-documented function of LRRK2 in central neurons, it is unclear whether LRRK2 is expressed in enteric neurons and affects the physiology of the gut. AIMS: By examining LRRK2-KO mice, this study investigated whether enteric neurons express LRRK2 and whether intestinal neuronal peptides and IgA are quantitatively changed. METHODS: Intestinal protein lysates and sections prepared from male C57BL/6 J mice were analyzed by Western blotting and immunostaining using anti-LRRK2 antibody, respectively. Intestinal neuronal peptide-mRNAs were quantified by real-time PCR in wild-type mice and LRRK2-KO mice. Intestinal IgA was quantified by ELISA. Lamina propria mononuclear cells (LPMCs) were analyzed by flow cytometry to evaluate the ratio of B1 to B2 B cells. RESULTS: Western analysis and immunostaining revealed that LRRK2 is expressed in enteric neurons. The amounts of mRNA for vasoactive intestinal peptide, neuropeptide Y, and substance P were increased in LRRK2-KO mice accompanied by an increment of IgA. However, the intestinal B cell subpopulations were not altered in LRRK2-KO mice. CONCLUSIONS: For the first time, we have revealed that LRRK2 is expressed in enteric neurons and related to quantitative alterations of neuronal peptide and IgA. Our study highlights the importance of LRRK2 in enteric neurons as well as central neurons.


Subject(s)
Colon/metabolism , Enteric Nervous System/metabolism , Immunoglobulin A/biosynthesis , Intestine, Small/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/biosynthesis , Neurons/metabolism , Animals , Colon/cytology , Immunoglobulin A/genetics , Intestine, Small/cytology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuropeptides/biosynthesis , Neuropeptides/genetics
12.
Planta Med ; 81(15): 1370-4, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26287767

ABSTRACT

It is well known that ultraviolet B irradiation leads to dermal inflammation. In this study, we found that Mekabu fucoidan suppressed edema, decreased the thickness of the prickle cell layer, and decreased matrix metalloproteinase 1 in the skin of mice irradiated with ultraviolet B. Moreover, we found that the mean level of interferon gamma of Mekabu fucoidan-treated, ultraviolet B-irradiated mice (approximately 2.2 ng/mL) was not significantly different from that in normal mice (approximately 2.5 ng/mL). In contrast, a significant decrease in the mean level of interferon gamma (approximately 1.3 ng/mL) in ultraviolet B-irradiated control mice was observed compared with that in Mekabu fucoidan-treated, ultraviolet B-irradiated mice. The mean thickness of the prickle cell layer in the skin of Mekabu fucoidan-treated, ultraviolet B-irradiated mice was less than that in the ultraviolet B-irradiated control mice. Metalloproteinase 1 activity was significantly higher in the skin of ultraviolet B-irradiated mice than in the skin of untreated, nonirradiated normal mice. Metalloproteinase 1 in the skin of ultraviolet B-irradiated, Mekabu fucoidan- or L(+)-ascorbic acid (vitamin C)-treated mice was significantly lower than that in the ultraviolet B-irradiated control mice. Mitigation of the morphological changes in Mekabu fucoidan-treated mice was correlated with a decrease in metalloproteinase 1 levels. These data indicate that Mekabu fucoidan is an effective suppressor of inflammation in an ultraviolet B-irradiated mouse model.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Dermatitis/prevention & control , Matrix Metalloproteinase 13/biosynthesis , Polysaccharides/pharmacology , Skin/drug effects , Ultraviolet Rays , Animals , Anti-Inflammatory Agents, Non-Steroidal/isolation & purification , Ascorbic Acid/pharmacology , Diet , Immunity/drug effects , Immunosuppression Therapy , Mice , Skin/radiation effects , Undaria/chemistry
13.
Front Pharmacol ; 15: 1331627, 2024.
Article in English | MEDLINE | ID: mdl-38515852

ABSTRACT

Introduction: Garcinia atroviridis has been used for traditional medicines, healthy foods and tea. The chemical compositions and biological activities of fruit, stem bark and root have been widely studied. However, the phytochemical components and the biological activities in Garcinia atroviridis leaves (GAL) are limited. This research aims to study the phytochemical components and the stress resistance effects of GAL in Caenorhabditis elegans (C. elegans). Methods: To investigate the chemical components and antioxidant activities of GAL extract, the ethanol extract was characterized by liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF MS) analysis and C. elegans was used to evaluate the effects of GAL extracts on longevity and stress resistance. Results and discussion: The results revealed that the ethanol extract of GAL possesses free radical scavenging activities. Furthermore, GAL extract increased the lifespan of C. elegans by 6.02%, 15.26%, and 12.75% at concentrations of 25, 50, and 100 µg/mL, respectively. GAL extract exhibited improved stress resistance under conditions of heat and hydrogen peroxide-induced stress. The survival rates of GAL extract-treated worms were significantly higher than those of untreated worms, and GAL extract reduced reactive oxygen species (ROS) accumulation. Additionally, GAL extract treatment upregulated the expression of stress resistance-associated genes, including gst-4, sod-3, skn-1, and hsp16.2. GAL extract supplementation alleviated stress and enhanced longevity by inducing stress-related genes in C. elegans. The observed effects of GAL extracts may be attributed to the stimulation of oxidant enzymes mediated through DAF-16/FOXO and SKN-1/NRF2, as well as the enhancement of thermal defense in C. elegans. Collectively, this study provides the first evidence of the antioxidant activities of GAL and elucidates the underlying mechanisms of stress resistance.

14.
Front Pharmacol ; 15: 1452616, 2024.
Article in English | MEDLINE | ID: mdl-39391697

ABSTRACT

This review discusses the prevention and treatment of coronavirus disease 2019 (COVID-19) caused by infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Mutations in its spike glycoprotein have driven the emergence of variants with high transmissibility and immune escape capabilities. Some antiviral drugs are ineffective against the BA.2 subvariant at the authorized dose. Recently, 150 natural metabolites have been identified as potential candidates for development of new anti-COVID-19 drugs with higher efficacy and lower toxicity than those of existing therapeutic agents. Botanical drug-derived bioactive molecules have shown promise in dampening the COVID-19 cytokine storm and thus preventing pulmonary fibrosis, as they exert a strong binding affinity for viral proteins and inhibit their activity. The Health Ministry of Thailand has approved Andrographis paniculata (Jap. Senshinren) extracts to treat COVID-19. In China, over 85% of patients infected with SARS-CoV-2 receive treatments based on traditional Chinese medicine. A comprehensive map of the stages and pathogenetic mechanisms related to the disease and effective natural products to treat and prevent COVID-19 are presented. Approximately 10% of patients with COVID-19 are affected by long COVID, and COVID-19 infection impairs mitochondrial DNA. As the number of agents to treat COVID-19 is limited, adjuvant botanical drug treatments including vitamin C and E supplementation may reduce COVID-19 symptoms and inhibit progression to long COVID.

15.
Biomolecules ; 14(1)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38275757

ABSTRACT

Questions about which reactive oxygen species (ROS) or reactive nitrogen species (RNS) can escape from the mitochondria and activate signals must be addressed. In this study, two parameters, the calculated dipole moment (debye, D) and permeability coefficient (Pm) (cm s-1), are listed for hydrogen peroxide (H2O2), hydroxyl radical (•OH), superoxide (O2•-), hydroperoxyl radical (HO2•), nitric oxide (•NO), nitrogen dioxide (•NO2), peroxynitrite (ONOO-), and peroxynitrous acid (ONOOH) in comparison to those for water (H2O). O2•- is generated from the mitochondrial electron transport chain (ETC), and several other ROS and RNS can be generated subsequently. The candidates which pass through the mitochondrial membrane include ROS with a small number of dipoles, i.e., H2O2, HO2•, ONOOH, •OH, and •NO. The results show that the dipole moment of •NO2 is 0.35 D, indicating permeability; however, •NO2 can be eliminated quickly. The dipole moments of •OH (1.67 D) and ONOOH (1.77 D) indicate that they might be permeable. This study also suggests that the mitochondria play a central role in protecting against further oxidative stress in cells. The amounts, the long half-life, the diffusion distance, the Pm, the one-electron reduction potential, the pKa, and the rate constants for the reaction with ascorbate and glutathione are listed for various ROS/RNS, •OH, singlet oxygen (1O2), H2O2, O2•-, HO2•, •NO, •NO2, ONOO-, and ONOOH, and compared with those for H2O and oxygen (O2). Molecules with negative electrical charges cannot directly diffuse through the phospholipid bilayer of the mitochondrial membranes. Short-lived molecules, such as •OH, would be difficult to contribute to intracellular signaling. Finally, HO2• and ONOOH were selected as candidates for the ROS/RNS that pass through the mitochondrial membrane.


Subject(s)
Hydrogen Peroxide , Nitrogen Dioxide , Reactive Oxygen Species , Hydrogen Peroxide/pharmacology , Cytosol , Oxidative Stress , Nitric Oxide , Peroxynitrous Acid , Oxygen , Mitochondria
16.
Biochem Biophys Res Commun ; 430(2): 560-6, 2013 Jan 11.
Article in English | MEDLINE | ID: mdl-23220480

ABSTRACT

Leucine-rich repeat kinase 2 (LRRK2) is the molecule responsible for autosomal-dominant Parkinson's disease (PD), PARK8, but the etiologic effects of its mutation remain unknown. In the present study, we investigated a novel mechanism for the neurodegeneration induced by I2020T mutant LRRK2. Using native gel electrophoresis and immunoprecipitation, we found that wild-type (WT) LRRK2 formed a heterodimer with I2020T LRRK2 in transfected cells, and that the heterodimer exhibited a markedly lower intracellular protein level than the WT/WT-homodimer. An increased amount of I2020T LRRK2 decreased the protein level of co-transfected WT LRRK2. A pulse-chase experiment revealed that the intracellular protein lifetime of WT LRRK2 was shortened by co-transfection with I2020T LRRK2. These results suggest that I2020T LRRK2 enhances the intracellular degradation of WT LRRK2 through WT/I2020T-heterodimer formation. Overexpression of WT LRRK2 in HEK293 cells increased the phosphorylation level of Akt1 (S473), a possible physiological substrate of LRRK2, and made cells resistant to hydrogen peroxide-induced apoptosis. However, both Akt1 phosphorylation and apoptosis resistance were reduced in WT/I2020T-expressing cells in comparison with WT/WT-expressing cells. Reduction of Akt1 phosphorylation and apoptosis resistance were also evident when a neuroblastoma SH-SY5Y clone overexpressing WT LRRK2 was transfected with the I2020T LRRK2. Altogether, these results suggest that the I2020T mutation enhances the intracellular degradation of LRRK2 through WT/I2020T-heterodimer formation, leading to reduced Akt1 phosphorylation and diminished protectivity against apoptosis. Our findings suggest the possibility of a dominant-negative mechanism of neurodegeneration in PD caused by I2020T LRRK2 mutation.


Subject(s)
Parkinson Disease/enzymology , Parkinson Disease/pathology , Protein Serine-Threonine Kinases/metabolism , Apoptosis , HEK293 Cells , Humans , Immunoprecipitation , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Mutation , Parkinson Disease/genetics , Phosphorylation , Protein Multimerization , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins c-akt
17.
J Nutr Metab ; 2023: 9774157, 2023.
Article in English | MEDLINE | ID: mdl-36660406

ABSTRACT

Type 2 diabetes mellitus (T2DM), a lifestyle-related disease, is developed due to eating habits and decreased physical activity. Diabetes also increases the risk of cancer and major neurodegenerative diseases; controlling the onset of diabetes helps prevent various illnesses. Eating seaweed, such as Undaria pinnatifida (wakame), is a part of the Asian food culture. Therefore, we analyzed the antidiabetic effect of wakame intake using the high-fat diet-induced diabetes mouse model. Furthermore, we analyzed the effect of wakame extract on the cell membrane translocation of glucose transporter-4 (GLUT4) and activation of insulin signal molecules, such as AKT and AMPK, in insulin-sensitive tissues. Differentiated C2C12 cells were incubated with wakame components. The membrane translocation of GLUT4 and phosphorylation of AKT and AMPK were investigated with immunofluorescence staining and Western blotting, respectively. Also, male C57BL/6J mice were fed the normal diet (ND), high-fat diet (HFD), ND with 1% wakame powder (ND + W), or HFD with 1% wakame powder (HFD + W). We evaluated the effect of wakame intake on high-fat diet-induced glucose intolerance using an oral glucose tolerance test. Moreover, we analyzed insulin signaling molecules, such as GLUT4, AKT, and AMPK, in muscle using Western blotting. GLUT4 membrane translocation was promoted by wakame components. Also, GLUT4 levels and AKT and AMPK phosphorylation were significantly elevated by wakame components in C2C12 cells. In addition, the area under the curve (AUC) of the HFD + W group was significantly smaller than that of the HFD group. Furthermore, the level of GLUT4 in the muscle was increased in the wakame intake group. This study revealed that various wakame components exerted antidiabetic effects on the mice on a high-fat diet by promoting glucose uptake in the skeletal muscle, enhancing GLUT4 levels, and activating AKT and AMPK.

18.
PeerJ ; 11: e15463, 2023.
Article in English | MEDLINE | ID: mdl-37273533

ABSTRACT

Police officers in Thailand have an increased risk of heart disease, stroke, and type 2 diabetes, possibly due to a high prevalence of hypertension and metabolic syndrome (MetS). In this study, the researchers aimed to understand the relationship between surrogate markers of insulin resistance (IR) and the prevalence of MetS and hypertension in Thai police officers. The study included 7,852 police officer participants, of which 91.8% were men with an average age of 48.56 years. The prevalence of hypertension and MetS were found to be 51.1% and 30.8%, respectively, and the participants with MetS and hypertension were older compared to the regular group. The study looked at eight IR indices, including markers such as atherogenic index of plasma (AIP), lipid accumulation product (LAP), metabolic score for insulin resistance (METS-IR), triglyceride glucose (TyG) index, TyG index with body mass index (TyG-BMI), TyG index with waist circumference (TyG-WC), the ratio of triglycerides to high-density lipoprotein cholesterol ratio (TG/HDL-c), and visceral obesity index (VAI). These indices were found to be positively correlated with waist circumference, systolic blood pressure (SBP), diastolic blood pressure (DBP), fasting plasma glucose (FPG), and triglycerides (TG), while being negatively correlated with high-density lipoprotein cholesterol (HDL-c). In addition, the multiple regression analysis showed that higher quartiles of all IR indices were significantly associated with increased risks of MetS and hypertension. Interestingly, the IR indices were more accurate in predicting MetS (ranges 0.848 to 0.892) than traditional obesity indices, with the AUC difference at p < 0.001. Among the IR indices, TyG-WC performed the best in predicting MetS (AUC value 0.892 and Youden index 0.620). At the same time, TyG-BMI had the highest accuracy in predicting hypertension (AUC value of 0.659 and Youden index of 0.236). In addition, this study found that when two markers were combined for diagnosing metabolic syndrome, a significantly improved predictive value for disease risk was observed, as evidenced by higher AUC and Yoden index. Moreover, the IR indices were found to have higher predictive power for MetS and hypertension in younger police personnel (age < 48 years) than older personnel. In conclusion, this study highlights the importance of reducing cardiovascular disease risks among law enforcement personnel as a strategic goal to improve their health and wellness. The findings suggest that IR indices may be valuable tools in predicting MetS and hypertension in law enforcement personnel and could potentially aid in the early identification and prevention of law enforcement personnel health conditions.


Subject(s)
Diabetes Mellitus, Type 2 , Hypertension , Insulin Resistance , Metabolic Syndrome , Male , Humans , Middle Aged , Female , Metabolic Syndrome/diagnosis , Police , Southeast Asian People , Thailand/epidemiology , Adiposity , Blood Glucose/metabolism , Hypertension/diagnosis , Glucose , Triglycerides , Lipoproteins, HDL/metabolism , Cholesterol
19.
FEBS Open Bio ; 13(12): 2200-2214, 2023 12.
Article in English | MEDLINE | ID: mdl-37845194

ABSTRACT

Epidemiological studies have shown that abnormalities of glucose metabolism are involved in leucine-rich repeat kinase 2 (LRRK2)-associated Parkinson's disease (PD). However, the physiological significance of this association is unclear. In the present study, we investigated the effect of LRRK2 on high-fat diet (HFD)-induced glucose intolerance using Lrrk2-knockout (KO) mice. We found for the first time that HFD-fed KO mice display improved glucose tolerance compared with their wild-type (WT) counterparts. In addition, high serum insulin and leptin, as well as low serum adiponectin resulting from HFD in WT mice were improved in KO mice. Using western blotting, we found that Lrrk2 is highly expressed in adipose tissues compared with other insulin-related tissues that are thought to be important in glucose tolerance, including skeletal muscle, liver, and pancreas. Lrrk2 expression and phosphorylation of its kinase substrates Rab8a and Rab10 were significantly elevated after HFD treatment in WT mice. In cell culture experiments, treatment with a LRRK2 kinase inhibitor stimulated insulin-dependent membrane translocation of glucose transporter 4 (Glut4) and glucose uptake in mouse 3T3-L1 adipocytes. We conclude that increased LRRK2 kinase activity in adipose tissue exacerbates glucose tolerance by suppressing Rab8- and Rab10-mediated GLUT4 membrane translocation.


Subject(s)
Adipocytes , Adipose Tissue , Animals , Mice , Adipocytes/metabolism , Adipose Tissue/metabolism , Biological Transport , Glucose/metabolism , Insulin/metabolism , Mice, Knockout
20.
Biomolecules ; 13(3)2023 02 27.
Article in English | MEDLINE | ID: mdl-36979380

ABSTRACT

It has been known that reactive oxygen species (ROS) are generated from the mitochondrial electron transport chain (ETC). Majima et al. proved that mitochondrial ROS (mtROS) caused apoptosis for the first time in 1998 (Majima et al. J Biol Chem, 1998). It is speculated that mtROS can move out of the mitochondria and initiate cellular signals in the nucleus. This paper aims to prove this phenomenon by assessing the change in the amount of manganese superoxide dismutase (MnSOD) by MnSOD transfection. Two cell lines of the same genetic background, of which generation of mtROS are different, i.e., the mtROS are more produced in RGK1, than in that of RGM1, were compared to analyze the cellular signals. The results of immunocytochemistry staining showed increase of Nrf2, Keap1, HO-1 and 2, MnSOD, GCL, GST, NQO1, GATA1, GATA3, GATA4, and GATA5 in RGK1 compared to those in RGM1. Transfection of human MnSOD in RGK1 cells showed a decrease of those signal proteins, suggesting mtROS play a role in cellular signals in nucleus.


Subject(s)
NF-E2-Related Factor 2 , Signal Transduction , Humans , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Apoptosis
SELECTION OF CITATIONS
SEARCH DETAIL