Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Sci Transl Med ; 9(412)2017 Oct 18.
Article in English | MEDLINE | ID: mdl-29046435

ABSTRACT

In search of metabolically regulated secreted proteins, we conducted a microarray study comparing gene expression in major metabolic tissues of fed and fasted ob/ob mice and C57BL/6 mice. The array used in this study included probes for ~4000 genes annotated as potential secreted proteins. Circulating macrophage inhibitory cytokine 1 (MIC-1)/growth differentiation factor 15 (GDF15) concentrations were increased in obese mice, rats, and humans in comparison to age-matched lean controls. Adeno-associated virus-mediated overexpression of GDF15 and recombinant GDF15 treatments reduced food intake and body weight and improved metabolic profiles in various metabolic disease models in mice, rats, and obese cynomolgus monkeys. Analysis of the GDF15 crystal structure suggested that the protein is not suitable for conventional Fc fusion at the carboxyl terminus of the protein. Thus, we used a structure-guided approach to design and successfully generate several Fc fusion molecules with extended half-life and potent efficacy. Furthermore, we discovered that GDF15 delayed gastric emptying, changed food preference, and activated area postrema neurons, confirming a role for GDF15 in the gut-brain axis responsible for the regulation of body energy intake. Our work provides evidence that GDF15 Fc fusion proteins could be potential therapeutic agents for the treatment of obesity and related comorbidities.


Subject(s)
Growth Differentiation Factor 15/therapeutic use , Obesity/drug therapy , Animals , Crystallography, X-Ray , Dependovirus/metabolism , Diet , Food Preferences , Gastric Emptying , Growth Differentiation Factor 15/chemistry , Humans , Macaca fascicularis , Male , Mice, Inbred C57BL , Mice, Obese , Neurons/physiology , Obesity/pathology , Rats, Sprague-Dawley , Receptors, Fc/metabolism , Recombinant Fusion Proteins/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL