Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
2.
J Biomed Sci ; 31(1): 1, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38163894

ABSTRACT

BACKGROUND: As of 2020, hepatocellular carcinoma (HCC), a form of liver cancer, stood as the third most prominent contributor to global cancer-related mortality. Combining immune checkpoint inhibitors (ICI) with other therapies has shown promising results for treating unresectable HCC, offering new opportunities. Recombinant adeno-associated viral type 2 (AAV2) virotherapy has been approved for clinical use but it efficacy is stifled through systemic administration. On the other hand, iron oxide nanoparticles (ION) can be cleared via the liver and enhance macrophage polarization, promoting infiltration of CD8+ T cells and creating a more favorable tumor microenvironment for immunotherapy. METHODS: To enhance the efficacy of virotherapy and promote macrophage polarization towards the M1-type in the liver, ION-AAV2 were prepared through the coupling of ION-carboxyl and AAV2-amine using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC)/N-hydroxysulfosuccinimide (Sulfo-NHS). Efficacy after systemic delivery of ION-AAV2 in an orthotopic HCC model was evaluated. RESULTS: After 28 days, the tumor weight in mice treated with ION-AAV2 was significantly reduced by 0.56-fold compared to the control group. The ION-AAV2 treatment led to an approximate 1.80-fold increase in the level of tumor associated M1-type macrophages, while the number of M2-type macrophages was reduced by 0.88-fold. Moreover, a proinflammatory response increased the population of tumor-infiltrating CD8+ T cells in the ION-AAV2 group. This transformation converted cold tumors into hot tumors. CONCLUSIONS: Our findings suggest that the conjugation of ION with AAV2 could be utilized in virotherapy while simultaneously exploiting macrophage-modulating cancer immunotherapies to effectively suppress HCC growth.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , Liver Neoplasms/drug therapy , Carcinoma, Hepatocellular/drug therapy , CD8-Positive T-Lymphocytes , Tumor Microenvironment , Dependovirus , Cell Line, Tumor
3.
Int J Mol Sci ; 25(4)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38396904

ABSTRACT

Accurately characterizing DNA double-stranded breaks (DSBs) and understanding the DNA damage response (DDR) is crucial for assessing cellular genotoxicity, maintaining genomic integrity, and advancing gene editing technologies. Immunofluorescence-based techniques have proven to be invaluable for quantifying and visualizing DSB repair, providing valuable insights into cellular repair processes. However, the selection of appropriate markers for analysis can be challenging due to the intricate nature of DSB repair mechanisms, often leading to ambiguous interpretations. This comprehensively summarizes the significance of immunofluorescence-based techniques, with their capacity for spatiotemporal visualization, in elucidating complex DDR processes. By evaluating the strengths and limitations of different markers, we identify where they are most relevant chronologically from DSB detection to repair, better contextualizing what each assay represents at a molecular level. This is valuable for identifying biases associated with each assay and facilitates accurate data interpretation. This review aims to improve the precision of DSB quantification, deepen the understanding of DDR processes, assay biases, and pathway choices, and provide practical guidance on marker selection. Each assay offers a unique perspective of the underlying processes, underscoring the need to select markers that are best suited to specific research objectives.


Subject(s)
DNA Breaks, Double-Stranded , DNA Damage , DNA/metabolism , DNA Repair , DNA End-Joining Repair
4.
Int J Mol Sci ; 23(9)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35563326

ABSTRACT

Radiotherapy is a highly affordable treatment and provides many excellent outcomes [...].


Subject(s)
Nanoparticles , Radiation-Sensitizing Agents , Radiation-Sensitizing Agents/pharmacology , Radiation-Sensitizing Agents/therapeutic use
5.
Int J Mol Sci ; 23(9)2022 Apr 24.
Article in English | MEDLINE | ID: mdl-35563097

ABSTRACT

Aluminium (Al) compounds are used as adjuvants in human and veterinary prophylactic vaccines due to their improved tolerability compared to other adjuvants. These Al-based adjuvants form microparticles (MPs) of heterogeneous sizes ranging from ~0.5 to 10 µm and generally induce type 2 (Th2)-biased immune responses. However, recent literature indicates that moving from micron dimension particles toward the nanoscale can modify the adjuvanticity of Al towards type 1 (Th1) responses, which can potentially be exploited for the development of vaccines for which Th1 immunity is crucial. Specifically, in the context of cancer treatments, Al nanoparticles (Al-NPs) can induce a more balanced (Th1/Th2), robust, and durable immune response associated with an increased number of cytotoxic T cells compared to Al-MPs, which are more favourable for stimulating an oncolytic response. In this review, we compare the adjuvant properties of Al-NPs to those of Al-MPs in the context of infectious disease vaccines and cancer immunotherapy and provide perspectives for future research.


Subject(s)
Nanoparticles , Vaccines , Adjuvants, Immunologic/pharmacology , Adjuvants, Pharmaceutic , Aluminum , Humans
6.
Int J Mol Sci ; 22(23)2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34884632

ABSTRACT

The MTT assay for cellular metabolic activity is almost ubiquitous to studies of cell toxicity; however, it is commonly applied and interpreted erroneously. We investigated the applicability and limitations of the MTT assay in representing treatment toxicity, cell viability, and metabolic activity. We evaluated the effect of potential confounding variables on the MTT assay measurements on a prostate cancer cell line (PC-3) including cell seeding number, MTT concentration, MTT incubation time, serum starvation, cell culture media composition, released intracellular contents (cell lysate and secretome), and extrusion of formazan to the extracellular space. We also assessed the confounding effect of polyethylene glycol (PEG)-coated gold nanoparticles (Au-NPs) as a tested treatment in PC-3 cells on the assay measurements. We additionally evaluated the applicability of microscopic image cytometry as a tool for measuring intracellular MTT reduction at the single-cell level. Our findings show that the assay measurements are a result of a complicated process dependant on many of the above-mentioned factors, and therefore, optimization of the assay and rational interpretation of the data is necessary to prevent misleading conclusions on variables such as cell viability, treatment toxicity, and/or cell metabolism. We conclude, with recommendations on how to apply the assay and a perspective on where the utility of the assay is a powerful tool, but likewise where it has limitations.


Subject(s)
Culture Media/pharmacology , Gold/chemistry , Metal Nanoparticles/administration & dosage , Prostatic Neoplasms/pathology , Secretome , Single-Cell Analysis/methods , Cell Count , Cell Survival , Humans , Male , Metal Nanoparticles/chemistry , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Tumor Cells, Cultured
7.
Nanomedicine ; 29: 102243, 2020 10.
Article in English | MEDLINE | ID: mdl-32623018

ABSTRACT

Many tumors develop resistance to most of the apoptosis-based cancer therapies. In this sense targeting non-apoptotic forms of cell death including necroptosis, autophagy and ferroptosis may have therapeutic benefits in apoptosis-defective cancer cells. Nanomaterials have shown great advantages in cancer treatment owing to their unique characteristics. Besides, the capability of nanomaterials to induce different forms of cell death has gained widespread attention in cancer treatment. Reports in this field reflect the therapeutic potential of necroptotic cell death induced by nanomaterials in cancer. Also, autophagic cell death induced by nanomaterials alone and as a part of chemo-, radio- and photothermal therapy holds great promise as anticancer therapeutic option. Besides, ferroptosis induction by iron-based nanomaterials in drug delivery, immunotherapy, hyperthermia and imaging systems shows promising results in malignancies. Hence, this review is devoted to the latest efforts and the challenges in this field of research and its clinical merits.


Subject(s)
Cell Death/drug effects , Nanostructures/therapeutic use , Necroptosis/drug effects , Neoplasms/drug therapy , Apoptosis/genetics , Autophagy/drug effects , Autophagy/genetics , Cell Death/genetics , Ferroptosis/drug effects , Ferroptosis/genetics , Humans , Necroptosis/genetics , Neoplasms/genetics , Neoplasms/pathology
8.
Int J Mol Sci ; 21(8)2020 Apr 20.
Article in English | MEDLINE | ID: mdl-32326054

ABSTRACT

Radiotherapy is a highly multidisciplinary field with respect to its foundations of research and development, and in its clinical utility [...].


Subject(s)
Nanoparticles , Radiation-Sensitizing Agents/administration & dosage , Radiation-Sensitizing Agents/chemistry , Animals , Humans , Radiotherapy/methods , Radiotherapy/standards
9.
Int J Mol Sci ; 21(2)2020 Jan 16.
Article in English | MEDLINE | ID: mdl-31963205

ABSTRACT

Metal nanoparticles are of increasing interest with respect to radiosensitization. The physical mechanisms of dose enhancement from X-rays interacting with nanoparticles has been well described theoretically, however have been insufficient in adequately explaining radiobiological response. Further confounding experimental observations is examples of radioprotection. Consequently, other mechanisms have gained increasing attention, especially via enhanced production of reactive oxygen species (ROS) leading to chemical-based mechanisms. Despite the large number of variables differing between published studies, a consensus identifies ROS-related mechanisms as being of significant importance. Understanding the structure-function relationship in enhancing ROS generation will guide optimization of metal nanoparticle radiosensitisers with respect to maximizing oxidative damage to cancer cells. This review highlights the physico-chemical mechanisms involved in enhancing ROS, commonly used assays and experimental considerations, variables involved in enhancing ROS generation and damage to cells and identifies current gaps in the literature that deserve attention. ROS generation and the radiobiological effects are shown to be highly complex with respect to nanoparticle physico-chemical properties and their fate within cells. There are a number of potential biological targets impacted by enhancing, or scavenging, ROS which add significant complexity to directly linking specific nanoparticle properties to a macroscale radiobiological result.


Subject(s)
Metal Nanoparticles/chemistry , Radiation Protection/methods , Reactive Oxygen Species/metabolism , Animals , Humans , Models, Theoretical , Oxidation-Reduction , Structure-Activity Relationship
10.
Int J Mol Sci ; 21(12)2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32580352

ABSTRACT

Gold nanoparticle (GNP) enhanced proton therapy is a promising treatment concept offering increased therapeutic effect. It has been demonstrated in experiments which provided indications that reactive species play a major role. Simulations of the radiolysis yield from GNPs within a cell model were performed using the Geant4 toolkit. The effect of GNP cluster size, distribution and number, cell and nuclear membrane absorption and intercellular yields were evaluated. It was found that clusters distributed near the nucleus increased the nucleus yield by 91% while reducing the cytoplasm yield by 7% relative to a disperse distribution. Smaller cluster sizes increased the yield, 200 nm clusters had nucleus and cytoplasm yields 117% and 35% greater than 500 nm clusters. Nuclear membrane absorption reduced the cytoplasm and nucleus yields by 8% and 35% respectively to a permeable membrane. Intercellular enhancement was negligible. Smaller GNP clusters delivered near sub-cellular targets maximise radiosensitisation. Nuclear membrane absorption reduces the nucleus yield, but can damage the membrane providing another potential pathway for biological effect. The minimal effect on adjacent cells demonstrates that GNPs provide a targeted enhancement for proton therapy, only effecting cells with GNPs internalised. The provided quantitative data will aid further experiments and clinical trials.


Subject(s)
Cells/radiation effects , Gold/chemistry , Metal Nanoparticles/chemistry , Models, Biological , Proton Therapy , Pulse Radiolysis , Radiation-Sensitizing Agents/chemistry , Monte Carlo Method
11.
Anal Chem ; 91(8): 5011-5020, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30793604

ABSTRACT

Anthropogenic copper pollution of environmental waters from sources such as acid mine drainage, antifouling paints, and industrial waste discharge is a major threat to our environment and human health. This study presents an optical sensing system that combines self-assembled glutaraldehyde-cross-linked double-layered polyethylenimine (PEI-GA-PEI)-modified nanoporous anodic alumina (NAA) interferometers with reflectometric interference spectroscopy (RIfS) for label-free, selective monitoring of ionic copper in environmental waters. Calibration of the sensing system with analytical solutions of copper shows a linear working range between 1 and 100 mg L-1, and a low limit of detection of 0.007 ± 0.001 mg L-1 (i.e., ∼0.007 ppm). Changes in the effective optical thickness (ΔOTeff) of PEI-GA-PEI-functionalized NAA interferometers are monitored in real-time by RIfS, and correlated with the amount of ionic copper present in aqueous solutions. The system performance is validated through X-ray photoelectron spectroscopy (XPS) and the spatial distribution of copper within the nanoporous films is characterized by time-of-flight-secondary ion mass spectroscopy (TOF-SIMS). The specificity and chemical selectivity of the PEI-GA-PEI-NAA sensor to Cu2+ ions is verified by screening six different metal ion solutions containing potentially interfering ions such as Al3+, Cd2+, Fe3+, Pb2+, Ni2+, and Zn2+. Finally, the performance of the PEI-GA-PEI-NAA sensor for real-life applications is demonstrated using legacy acid mine drainage liquid and tap water for qualitative and quantitative detection of copper ions. This study provides new opportunities to develop portable, cost-competitive, and ultrasensitive sensing systems for real-life environmental applications.


Subject(s)
Aluminum Oxide/chemistry , Copper/analysis , Interferometry/instrumentation , Nanopores , Polyethyleneimine/chemistry , Calibration , Copper/chemistry , Electrodes
12.
Bioconjug Chem ; 30(10): 2697-2702, 2019 10 16.
Article in English | MEDLINE | ID: mdl-31532192

ABSTRACT

Deregulated proliferation of tumors is generally associated with altered energy metabolism. A high rate of anaerobic glycolysis in solid tumors contributes to an acidification of pH to ∼6.7-7.2 in the tumor microenvironment and lactate accumulation. Macrophages in the tumor microenvironment can be educated by tumor cells. Tumor-derived lactate induces the polarization of M2 macrophages and promotes tumor invasion and metastasis. However, a particular challenge is to sustain lactate depletion. We propose that the repolarization of the tumor-supportive M2 macrophage to the tumor-suppressive M1 macrophage after the depletion of lactate by lactate oxidase (LOX) released from the hydrogels in the tumor microenvironment may enhance the antitumor treatment efficacy.


Subject(s)
Drug Liberation , Hydrogels/chemistry , Macrophages/metabolism , Methylcellulose/chemistry , Mixed Function Oxygenases/chemistry , Animals , Hydrogen-Ion Concentration , Lactates/metabolism , Macrophages/drug effects , Mice , Mixed Function Oxygenases/metabolism , Mixed Function Oxygenases/pharmacology , Nitric Oxide/biosynthesis , Phenotype , RAW 264.7 Cells
13.
Anal Bioanal Chem ; 411(28): 7529-7538, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31691854

ABSTRACT

Quantification of intercellular heterogeneity in nanoparticle association is of paramount interest in research investigating applications of nanoparticles in the biomedical space. In this work, gold nanoparticle association (AuNP) in cell populations was quantified using synchrotron X-ray fluorescence microscopy (XRF) for 3 different cell lines (PC-3, Caco2 and MDA-MB-231) and 2 nanoparticle co-culture times (30 min and 10% of each respective cell lines' doubling time). Heterogeneity in association between single cells in the same population was dependant on cell line as well as co-culture time. AuNP association heterogeneity increased with co-culture time for 2 out of the 3 cell lines. Regardless of mean association quantity and measured intercellular heterogeneity, all data were best described by log normal distributions. Mean association between cell lines was statistically different at 30 min, yet indistinguishable at 10% doubling time. Heterogeneity between cell lines which demonstrated statistical differences in distribution can exist despite having statistically indistinguishable means.


Subject(s)
Gold/metabolism , Metal Nanoparticles/chemistry , Cell Line , Coculture Techniques , Gold/chemistry , Humans , Microscopy, Fluorescence , Synchrotrons
14.
Int J Mol Sci ; 20(17)2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31480532

ABSTRACT

Gold nanoparticles (GNPs) are promising radiosensitizers with the potential to enhance radiotherapy. Experiments have shown GNP enhancement of proton therapy and indicated that chemical damage by reactive species plays a major role. Simulations of the distribution and yield of reactive species from 10 ps to 1 µs produced by a single GNP, two GNPs in proximity and a GNP cluster irradiated with a proton beam were performed using the Geant4 Monte Carlo toolkit. It was found that the reactive species distribution at 1 µs extended a few hundred nm from a GNP and that the largest enhancement occurred over 50 nm from the nanoparticle. Additionally, the yield for two GNPs in proximity and a GNP cluster was reduced by up to 17% and 60% respectively from increased absorption. The extended range of action from the diffusion of the reactive species may enable simulations to model GNP enhanced proton therapy. The high levels of absorption for a large GNP cluster suggest that smaller clusters and diffuse GNP distributions maximize the total radiolysis yield within a cell. However, this must be balanced against the high local yields near a cluster particularly if the cluster is located adjacent to a biological target.


Subject(s)
Gold , Metal Nanoparticles/therapeutic use , Models, Biological , Proton Therapy , Animals , Humans , Metal Nanoparticles/chemistry , Monte Carlo Method , Neoplasms/drug therapy , Neoplasms/radiotherapy , Radiation-Sensitizing Agents/therapeutic use
15.
Toxicol Appl Pharmacol ; 343: 40-47, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29471083

ABSTRACT

Zinc pyrithione is an active component incorporated in an extensive range of topically applied commercial products that are used worldwide. Despite its prevalence, no published study has investigated the penetration of zinc from the zinc pyrithione complex into human skin. Zinc is crucial for healthy skin function however an elevated concentration of labile zinc is toxic outside a narrow concentration range. Synchrotron X-ray fluorescence microscopy in conjunction with X-ray absorption near edge structure spectroscopy was used to map the deposition of zinc, quantitate the amount of zinc within the skin and to identify a change in the chemical form of zinc after application. This study has demonstrated a ~3.8 fold increase in zinc concentration within the viable epidermis (VE) after 24 h topical application of zinc pyrithione that increased significantly by ~250 fold after 48 h when compared to control skin. Confocal microscopy using a labile zinc specific dye, ZinPyr-1, showed that zinc pyrithione disrupted the skin cells zinc homeostasis and significantly increased the intracellular zinc concentration leading to cell toxicity. Overall, this study demonstrates that topical application of zinc pyrithione formulations leads to an increase in zinc penetration in human skin, consequently, raising concerns for potential localised toxicity to occur.


Subject(s)
Epidermis/diagnostic imaging , Epidermis/metabolism , Organometallic Compounds/administration & dosage , Organometallic Compounds/metabolism , Pyridines/administration & dosage , Pyridines/metabolism , Skin Absorption/physiology , Administration, Topical , Adult , Cell Line , Epidermis/drug effects , Female , Humans , Organ Culture Techniques , Skin Absorption/drug effects , X-Ray Absorption Spectroscopy/methods , Zinc/administration & dosage , Zinc/metabolism , Zinc Oxide/administration & dosage , Zinc Oxide/metabolism
16.
Bioconjug Chem ; 28(6): 1702-1708, 2017 06 21.
Article in English | MEDLINE | ID: mdl-28482158

ABSTRACT

Chemotherapy represents a conventional treatment for many cancers at different stages and is either solely prescribed or concomitant to surgery, radiotherapy, or both. However, treatment is tempered in instances of acquired drug resistance in response to either chemotherapy or targeted therapy, leading to therapeutic failure. To overcome this challenge, many studies focus on how cancer cells manipulate their genomes and metabolism to prevent drug influx and facilitate the efflux of accumulated chemotherapy drugs. Herein, we demonstrate magnetic adeno-associated virus serotype 2 (ironized AAV2) has an ability to be magnetically guided and transduce the photosensitive KillerRed protein to enable photodynamic therapy irrespective of drug resistance.


Subject(s)
Breast Neoplasms/pathology , Photochemotherapy/methods , Transduction, Genetic/methods , Adenoviridae/genetics , Cell Line, Tumor , Drug Resistance, Multiple/radiation effects , Female , Humans , Magnetics
17.
Biofouling ; 33(2): 184-194, 2017 02.
Article in English | MEDLINE | ID: mdl-28198663

ABSTRACT

Shortly after a surface is submerged in the sea, a conditioning film is generally formed by adsorption of organic molecules, such as polysaccharides. This could affect transport of molecules and ions between the seawater and the surface. An artificial seawater model system was developed to understand how adsorbed polysaccharides impact copper binding by glutaraldehyde-crosslinked polyethyleneimine coatings. Coating performance was also determined when competed against copper-chelating EDTA. Polysaccharide adsorption and copper binding and distribution were investigated using advanced analytical techniques, including depth-resolved time-of-flight secondary ion mass spectroscopy, grazing incidence X-ray absorption near-edge spectroscopy, quartz crystal microbalance with dissipation monitoring and X-ray photoelectron spectroscopy. In artificial seawater, the polysaccharides adsorbed in a swollen state that copper readily penetrated and the glutaraldehyde-polyethyleneimine coatings outcompeted EDTA for copper binding. Furthermore, the depth distribution of copper species was determined with nanometre precision. The results are highly relevant for copper-binding and copper-releasing materials in seawater.


Subject(s)
Copper/analysis , Edetic Acid/chemistry , Glutaral/chemistry , Polyethyleneimine/chemistry , Polysaccharides/chemistry , Seawater/chemistry , Adsorption , Biofouling/prevention & control , Cross-Linking Reagents/chemistry , Ions , Ligands , Models, Chemical , Surface Properties , Water Pollution, Chemical/prevention & control
18.
Anal Chem ; 87(21): 10693-7, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-26461268

ABSTRACT

Internalized gold nanoparticles were quantified in large numbers of individual prostate cancer cells using large area synchrotron X-ray fluorescence microscopy. Cells were also irradiated with a 6 MV linear accelerator to assess the biological consequence of radiosensitization with gold nanoparticles. A large degree of heterogeneity in nanoparticle uptake between cells resulted in influenced biological effect.


Subject(s)
Cells/radiation effects , Fluorescence , Light , Metal Nanoparticles/chemistry , Cells/drug effects , Gold/chemistry , Humans , Male , Prostatic Neoplasms/drug therapy , X-Rays
19.
Langmuir ; 31(37): 10198-207, 2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26340506

ABSTRACT

Quartz crystal microbalance with dissipation (QCM-D) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were used to provide insights into the relationship between lipid adsorption kinetics and molecular behavior in porous silica particles of varying hydrophobicities on lipase activity. Lipase (an interfacial enzyme that cleaves ester bonds to break down lipids to fatty acids and monoglycerides) activity was controlled by loading triglycerides at different surface coverages in hydrophilic and hydrophobic porous silica particles. The rate of lipid adsorption increased 2-fold for the hydrophobic surface compared to the hydrophilic surface. However, for submonolayer lipid coverage, the hydrophilic surface enhanced lipase activity 4-fold, whereas the hydrophobic surface inhibited lipase activity 16-fold, compared to lipid droplets in water. A difference in lipid orientation for low surface coverage, evidenced by ToF-SIMS, indicated that lipid adsorbs to hydrophilic silica in a conformation promoting hydrolysis. Multilayer coverage on hydrophobic and hydrophilic surfaces was indistinguishable with ToF-SIMS analysis. Increased lipid adsorption for both substrates facilitated digestion kinetics comparable to a conventional emulsion. Improved understanding of the interfacial adsorption and orientation of lipid and its digestibility in porous silica has implications in improving the uptake of pharmaceuticals and nutrients from lipid-based delivery systems.


Subject(s)
Lipase/metabolism , Lipids/chemistry , Quartz Crystal Microbalance Techniques , Adsorption , Hydrophobic and Hydrophilic Interactions , Mass Spectrometry , Silicon Dioxide/chemistry , Surface Properties
20.
Small ; 10(22): 4711-7, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24948042

ABSTRACT

NaREF4 nanocrystals are found to be highly manipulable by electron beam irradiation. With 200 kV electron beam irradiation, both 14.6 nm spherical NaGdF4 :Yb,Er nanoparticles and 44.7 nm × 34.1 nm ellipsoidal NaYF4 :Yb,Er nanorods form hollow structures and eventually convert to the corresponding REF3 upon prolonged irradiation. Furthermore, the NaYF4 nanorods fractured with irradiation with a 100 kV electron source are found to be subsequently self-healed when irradiated with a 200 kV source. The detailed experimental results, in combination with theoretical analysis, suggest that knock-on effects, specific lattice energy, and the inherently low surface energy of NaREF4 collectively contribute to the formation of the hollow structures. These mechanisms allow controlled engineering and manipulation of RE nanomaterials on the nanometer scale.

SELECTION OF CITATIONS
SEARCH DETAIL