Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 130
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
J Biol Chem ; 300(2): 105632, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38199573

ABSTRACT

We previously reported that bakuchiol, a phenolic isoprenoid anticancer compound, and its analogs exert anti-influenza activity. However, the proteins targeted by bakuchiol remain unclear. Here, we investigated the chemical structures responsible for the anti-influenza activity of bakuchiol and found that all functional groups and C6 chirality of bakuchiol were required for its anti-influenza activity. Based on these results, we synthesized a molecular probe containing a biotin tag bound to the C1 position of bakuchiol. With this probe, we performed a pulldown assay for Madin-Darby canine kidney cell lysates and purified the specific bakuchiol-binding proteins with SDS-PAGE. Using nanoLC-MS/MS analysis, we identified prohibitin (PHB) 2, voltage-dependent anion channel (VDAC) 1, and VDAC2 as binding proteins of bakuchiol. We confirmed the binding of bakuchiol to PHB1, PHB2, and VDAC2 in vitro using Western blot analysis. Immunofluorescence analysis showed that bakuchiol was bound to PHBs and VDAC2 in cells and colocalized in the mitochondria. The knockdown of PHBs or VDAC2 by transfection with specific siRNAs, along with bakuchiol cotreatment, led to significantly reduced influenza nucleoprotein expression levels and viral titers in the conditioned medium of virus-infected Madin-Darby canine kidney cells, compared to the levels observed with transfection or treatment alone. These findings indicate that reducing PHBs or VDAC2 protein, combined with bakuchiol treatment, additively suppressed the growth of influenza virus. Our findings indicate that bakuchiol exerts anti-influenza activity via a novel mechanism involving these mitochondrial proteins, providing new insight for developing anti-influenza agents.


Subject(s)
Antiviral Agents , Influenza, Human , Phenols , Animals , Dogs , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Mitochondrial Proteins/metabolism , Prohibitins , Tandem Mass Spectrometry , Voltage-Dependent Anion Channel 1 , Voltage-Dependent Anion Channel 2/metabolism , Voltage-Dependent Anion Channels , Cell Line
2.
J Virol ; : e0126224, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39194237

ABSTRACT

Production of the amyloidogenic prion protein, PrPSc, which forms infectious protein aggregates, or prions, is a key pathogenic event in prion diseases. Functional prion-like protein aggregations, such as the mitochondrial adaptor protein MAVS and the inflammasome component protein ASC, have been identified to play a protective role in viral infections in mammalian cells. In this study, to investigate if PrPSc could play a functional role against external stimuli, we infected prion-infected cells with a neurotropic influenza A virus strain, IAV/WSN. We found that prion-infected cells were highly resistant to IAV/WSN infection. In these cells, NF-κB nuclear translocation was disturbed; therefore, mitochondrial superoxide dismutase (mtSOD) expression was suppressed, and mitochondrial reactive oxygen species (mtROS) was increased. The elevated mtROS subsequently activated NLRP3 inflammasomes, leading to the suppression of IAV/WSN-induced necroptosis. We also found that prion-infected cells accumulated a portion of PrP molecules in the cytosol, and that the N-terminal potential nuclear translocation signal of PrP impeded NF-κB nuclear translocation. These results suggest that PrPSc might play a functional role in protection against viral infections by stimulating the NLRP3 inflammasome-dependent antivirus mechanism through the cytosolic PrP-mediated disturbance of NF-κB nuclear translocation, which leads to suppression of mtSOD expression and consequently upregulation of the NLRP3 inflammasome activator mtROS. IMPORTANCE: Cytosolic PrP has been detected in prion-infected cells and suggested to be involved in the neurotoxicity of prions. Here, we also detected cytosolic PrP in prion-infected cells. We further found that the nuclear translocation of NF-κB was disturbed in prion-infected cells and that the N-terminal potential nuclear translocation signal of PrP expressed in the cytosol disturbed the nuclear translocation of NF-κB. Thus, the N-terminal nuclear translocation signal of cytosolic PrP might play a role in prion neurotoxicity. Prion-like protein aggregates in other protein misfolding disorders, including Alzheimer's disease were reported to play a protective role against various environmental stimuli. We here showed that prion-infected cells were partially resistant to IAV/WSN infection due to the cytosolic PrP-mediated disturbance of the nuclear translocation of NF-κB, which consequently activated NLRP3 inflammasomes after IAV/WSN infection. It is thus possible that prions could also play a protective role in viral infections.

3.
Biol Pharm Bull ; 46(9): 1231-1239, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37357386

ABSTRACT

Personal protective equipment (PPE), including medical masks, should be worn for preventing the transmission of respiratory pathogens via infective droplets and aerosols. In medical masks, the key layer is the filter layer, and the melt-blown nonwoven fabric (NWF) is the most used fabric. However, the NWF filter layer cannot kill or inactivate the pathogens spread via droplets and aerosols. Povidone-iodine (PVP-I) has been used as an antiseptic solution given its potent broad-spectrum activity against pathogens. To develop PPE (e.g., medical masks) with anti-pathogenic activity, we integrated PVP-I into nylon-66 NWF. We then evaluated its antiviral activity against influenza A viruses by examining the viability of Madin-Darby canine kidney (MDCK) cells after inoculation with the virus strains exposed to the PVP-I-integrated nylon-66 NWF. The PVP-I nylon-66 NWF protected the MDCK cells from viral infection in a PVP-I concentration-dependent manner. Subsequently, we found to integrate PVP-I into nylon-66 and polyurethane materials among various materials. These PVP-I materials were also effective against influenza virus infection, and treatment with PVP-I nylon-66 NWF showed the highest cell survival among all the tested materials. PVP-I showed anti-influenza A virus activity when used in conjunction with PPE materials. Moreover, nylon-66 NWF integrated with PVP-I was found to be the best material to ensure anti-influenza activity. Therefore, PVP-I-integrated masks could have the potential to inhibit respiratory virus infection. Our results provide new information for developing multi-functional PPEs with anti-viral activity by integrating them with PVP-I to prevent the potential transmission of respiratory viruses.


Subject(s)
Influenza, Human , Orthomyxoviridae , Animals , Dogs , Humans , Povidone-Iodine/pharmacology , Povidone-Iodine/therapeutic use , Nylons , Respiratory Aerosols and Droplets , Influenza, Human/prevention & control
4.
PLoS Pathog ; 16(8): e1008823, 2020 08.
Article in English | MEDLINE | ID: mdl-32845931

ABSTRACT

The cellular prion protein, PrPC, is a glycosylphosphatidylinositol anchored-membrane glycoprotein expressed most abundantly in neuronal and to a lesser extent in non-neuronal cells. Its conformational conversion into the amyloidogenic isoform in neurons is a key pathogenic event in prion diseases, including Creutzfeldt-Jakob disease in humans and scrapie and bovine spongiform encephalopathy in animals. However, the normal functions of PrPC remain largely unknown, particularly in non-neuronal cells. Here we show that stimulation of PrPC with anti-PrP monoclonal antibodies (mAbs) protected mice from lethal infection with influenza A viruses (IAVs), with abundant accumulation of anti-inflammatory M2 macrophages with activated Src family kinases (SFKs) in infected lungs. A SFK inhibitor dasatinib inhibited M2 macrophage accumulation in IAV-infected lungs after treatment with anti-PrP mAbs and abolished the anti-PrP mAb-induced protective activity against lethal influenza infection in mice. We also show that stimulation of PrPC with anti-PrP mAbs induced M2 polarization in peritoneal macrophages through SFK activation in vitro and in vivo. These results indicate that PrPC could activate SFK in macrophages and induce macrophage polarization to an anti-inflammatory M2 phenotype after stimulation with anti-PrP mAbs, thereby eliciting protective activity against lethal infection with IAVs in mice after treatment with anti-PrP mAbs. These results also highlight PrPC as a novel therapeutic target for IAV infection.


Subject(s)
Influenza A virus/metabolism , Lung , Macrophages , Orthomyxoviridae Infections , PrPC Proteins/metabolism , Signal Transduction , Animals , Antibodies, Monoclonal, Murine-Derived/pharmacology , Lung/metabolism , Lung/pathology , Lung/virology , Macrophages/metabolism , Macrophages/pathology , Macrophages/virology , Mice , Mice, Mutant Strains , Orthomyxoviridae Infections/genetics , Orthomyxoviridae Infections/metabolism , Orthomyxoviridae Infections/pathology , PrPC Proteins/antagonists & inhibitors , src-Family Kinases/genetics , src-Family Kinases/metabolism
5.
PLoS Pathog ; 14(5): e1007049, 2018 05.
Article in English | MEDLINE | ID: mdl-29723291

ABSTRACT

The cellular prion protein, designated PrPC, is a membrane glycoprotein expressed abundantly in brains and to a lesser extent in other tissues. Conformational conversion of PrPC into the amyloidogenic isoform is a key pathogenic event in prion diseases. However, the physiological functions of PrPC remain largely unknown, particularly in non-neuronal tissues. Here, we show that PrPC is expressed in lung epithelial cells, including alveolar type 1 and 2 cells and bronchiolar Clara cells. Compared with wild-type (WT) mice, PrPC-null mice (Prnp0/0) were highly susceptible to influenza A viruses (IAVs), with higher mortality. Infected Prnp0/0 lungs were severely injured, with higher inflammation and higher apoptosis of epithelial cells, and contained higher reactive oxygen species (ROS) than control WT lungs. Treatment with a ROS scavenger or an inhibitor of xanthine oxidase (XO), a major ROS-generating enzyme in IAV-infected lungs, rescued Prnp0/0 mice from the lethal infection with IAV. Moreover, Prnp0/0 mice transgenic for PrP with a deletion of the Cu-binding octapeptide repeat (OR) region, Tg(PrPΔOR)/Prnp0/0 mice, were also highly susceptible to IAV infection. These results indicate that PrPC has a protective role against lethal infection with IAVs through the Cu-binding OR region by reducing ROS in infected lungs. Cu content and the activity of anti-oxidant enzyme Cu/Zn-dependent superoxide dismutase, SOD1, were lower in Prnp0/0 and Tg(PrPΔOR)/Prnp0/0 lungs than in WT lungs. It is thus conceivable that PrPC functions to maintain Cu content and regulate SOD1 through the OR region in lungs, thereby reducing ROS in IAV-infected lungs and eventually protecting them from lethal infection with IAVs. Our current results highlight the role of PrPC in protection against IAV infection, and suggest that PrPC might be a novel target molecule for anti-influenza therapeutics.


Subject(s)
PrPC Proteins/metabolism , Prion Proteins/metabolism , Animals , Brain/pathology , Copper/metabolism , Disease Susceptibility/metabolism , Influenza A virus/metabolism , Influenza A virus/pathogenicity , Lung/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism , PrPC Proteins/physiology , Prion Diseases/metabolism , Prion Proteins/pharmacology , Prions/metabolism , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism
6.
Mol Carcinog ; 58(10): 1726-1737, 2019 10.
Article in English | MEDLINE | ID: mdl-31106493

ABSTRACT

Phosphorylation of pyruvate dehydrogenase by pyruvate dehydrogenase kinase 4 (PDK4) 4 inhibits its ability to induce a glycolytic shift. PDK4 expression is frequently upregulated in various cancer tissues, with its elevation being critical for the induction of the Warburg effect. PDK4 is an attractive target for cancer therapy given its effect on shifting glucose metabolism. Previous research has highlighted the necessity of identifying a potent compound to suppress PDK4 activity at the submicromolar concentrations. Here we identified natural diterpene quinones (KIS compounds) that inhibit PDK4 at low micromolar concentrations. KIS37 (cryptotanshinone) inhibited anchorage-independent growth in three-dimensional spheroid and soft agar colony formation assays of KRAS-activated human pancreatic (MIAPaCa-2 and Panc-1) and colorectal (DLD-1 and HCT116) cancer cell lines. KIS37 also suppressed KRAS protein expression in such cell lines. Furthermore, KIS37 suppressed phosphorylation of Rb protein and cyclin D1 protein expression via the PI3K-Akt-mTOR signaling pathway under nonadherent culture conditions and suppressed the expression of cancer stem cell markers CD44, EpCAM, and ALDH1A1 in MIAPaCa-2 cells. KIS37 also suppressed pancreatic cancer cell growth in both subcutaneous xenograft and orthotopic pancreatic tumor models in nude mice at 40 mg/kg (intraperitoneal dose) without any evident toxicity. Reduced ALDH1A1 expression was observed in KIS37-treated pancreatic tumors, suggesting that cancer cell stemness was also suppressed in the orthotopic tumor model. The aforementioned results indicate that KIS37 administration is a novel therapeutic strategy for targeting PDK4 in KRAS-activated intractable human pancreatic cancer.


Subject(s)
Aldehyde Dehydrogenase 1 Family/genetics , Enzyme Inhibitors/pharmacology , Pancreatic Neoplasms/drug therapy , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics , Retinal Dehydrogenase/genetics , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Enzyme Inhibitors/chemistry , Gene Expression Regulation, Neoplastic/drug effects , HCT116 Cells , Humans , Mice , Neoplastic Stem Cells/drug effects , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Phosphatidylinositol 3-Kinases/genetics , Plant Extracts/chemistry , Plant Extracts/pharmacology , Proto-Oncogene Proteins p21(ras)/genetics , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/antagonists & inhibitors , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/genetics , Xenograft Model Antitumor Assays
7.
Lancet ; 389(10066): 276-286, 2017 01 21.
Article in English | MEDLINE | ID: mdl-27939035

ABSTRACT

BACKGROUND: Evidence is accumulating that early consumption is more beneficial than is delayed introduction as a strategy for primary prevention of food allergy. However, allergic reactions caused by early introduction of such solid foods have been a problematic issue. We investigated whether or not early stepwise introduction of eggs to infants with eczema combined with optimal eczema treatment would prevent egg allergy at 1 year of age. METHODS: In this randomised, double-blind, placebo-controlled trial, we enrolled infants 4-5 months of age with eczema from two centres in Japan. Exclusion criteria were being born before 37 weeks of gestational age, experience of ingestion of hen's eggs or egg products, history of immediate allergic reaction to hen's eggs, history of non-immediate allergic reaction to a particular type of food, and complications of any severe disease. Infants were randomly assigned (block size of four; stratified by institution and sex) to early introduction of egg or placebo (1:1). Participants in the egg group consumed orally 50 mg of heated egg powder per day from 6 months to 9 months of age and 250 mg per day thereafter until 12 months of age. We aggressively treated participants' eczema at entry and maintained control without exacerbations throughout the intervention period. Participants and physicians were masked to assignment, and allocation was concealed. The primary outcome was the proportion of participants with hen's egg allergy confirmed by open oral food challenges at 12 months of age, assessed blindly by standardised methods, in all randomly allocated participants who received the intervention. This trial is registered with the University Hospital Medical Information Network Clinical Trials Registry, number UMIN000008673. FINDINGS: Between Sept 18, 2012, and Feb 13, 2015, we randomly allocated 147 participants (73 [50%] to the egg group and 74 [50%] to the placebo group). This trial was terminated on the basis of the results of the scheduled interim analysis of 100 participants, which showed a significant difference between the two groups (four [9%] of 47 participants had an egg allergy in the egg group vs 18 [38%] of 47 in the placebo group; risk ratio 0·222 [95% CI 0·081-0·607]; p=0·0012). In the primary analysis population, five (8%) of 60 participants had an egg allergy in the egg group compared with 23 (38%) of 61 in the placebo group (risk ratio 0·221 [0·090-0·543]; p=0·0001). The only difference in adverse events between groups was admissions to hospital (six [10%] of 60 in the egg group vs none in the placebo group; p=0·022). 19 acute events occurred in nine (15%) participants in the egg group versus 14 events in 11 (18%) participants in the placebo group after intake of the trial powder. INTERPRETATION: Introduction of heated egg in a stepwise manner along with aggressive eczema treatment is a safe and efficacious way to prevent hen's egg allergy in high-risk infants. In this study, we developed a practical approach to overcome the second wave of the allergic epidemic caused by food allergy. FUNDING: Ministry of Health, Labour and Welfare, and National Centre for Child Health and Development, Japan.


Subject(s)
Desensitization, Immunologic/methods , Eczema/prevention & control , Egg Hypersensitivity/prevention & control , Double-Blind Method , Eczema/immunology , Egg Hypersensitivity/immunology , Female , Humans , Immunoglobulin E/metabolism , Infant , Male , Risk Factors , Treatment Outcome
9.
Pediatr Allergy Immunol ; 28(4): 355-361, 2017 06.
Article in English | MEDLINE | ID: mdl-28140473

ABSTRACT

BACKGROUND: Allergen-specific low-affinity IgE was previously detected in cord blood by a highly sensitive densely carboxylated protein (DCP) chip, but not by ImmunoCAP. Here, we investigated the presence of low-affinity IgE during the early life of infants and observed its relationship with eczema. METHODS: We conducted a birth cohort study, collecting sera at birth and 6 and 14 months of age (n = 110). We monitored the ovomucoid (OM)- and egg white (EW)-specific IgE (sIgE) by ImmunoCAP or DCP chip and analyzed the antigen affinity of sIgE by binding inhibition assays in the presence or absence of a mild chaotropic agent, diethyl amine (DEA). The low- and high-affinity OM-sIgEs and sensitization risk factors were analyzed by a multivariate logistic analysis. RESULTS: The OM-sIgE measured by DCP chip significantly correlated with that measured by ImmunoCAP, but some samples assessed as OM-sIgE positive by DCP chip were considered OM-sIgE negative by ImmunoCAP. Binding inhibition analysis after DEA treatment was performed for participants judged as OM-sIgE positive by DCP chip at 14 M. The group assessed as negative for OM- and EW-sIgE by ImmunoCAP at 6 and 14 months showed a larger binding inhibition curve shift after DEA treatment than did the group assessed as positive at these times, indicating the presence of low-affinity sIgE antibodies at 14 months. The logistic regression analysis found that persistent eczema from 6 to 14 months is a significant risk factor for developing high-affinity, but not low-affinity, sIgE. CONCLUSIONS: Human infant peripheral blood contains allergen-specific low-affinity sIgE. Persistent eczema is related to the development of high-affinity, but not low-affinity, IgE.


Subject(s)
Allergens/immunology , Eczema/immunology , Egg Hypersensitivity/immunology , Immunoglobulin E/blood , Ovomucin/immunology , Antibody Affinity , Cohort Studies , Eczema/diagnosis , Egg Hypersensitivity/diagnosis , Female , Humans , Infant , Male , Risk Factors
10.
BMC Complement Altern Med ; 17(1): 96, 2017 Feb 07.
Article in English | MEDLINE | ID: mdl-28173854

ABSTRACT

BACKGROUND: To contribute to the development of novel anti-influenza drugs, we investigated the anti-influenza activity of crude extracts from 118 medicinal plants collected in Myanmar. We discovered that extract from the stems of Jatropha multifida Linn. showed anti-influenza activity. J. multifida has been used in traditional medicine for the treatment of various diseases, and the stem has been reported to possess antimicrobial, antimalarial, and antitumor activities. However, the anti-influenza activity of this extract has not yet been investigated. METHODS: We prepared water (H2O), ethyl acetate (EtOAc), n-hexane (Hex), and chloroform (CHCl3) extracts from the stems of J. multifida collected in Myanmar, and examined the survival of Madin-Darby canine kidney (MDCK) cells infected with the influenza A (H1N1) virus, and the inhibitory effects of these crude extracts on influenza A viral infection and growth in MDCK cells. RESULTS: The H2O extracts from the stems of J. multifida promoted the survival of MDCK cells infected with the influenza A H1N1 virus. The EtOAc and CHCl3 extracts resulted in similar, but weaker, effects. The H2O, EtOAc, and CHCl3 extracts from the stems of J. multifida inhibited influenza A virus H1N1 infection; the H2O extract possessed the strongest inhibitory effect on influenza infection in MDCK cells. The EtOAc, Hex, and CHCl3 extracts all inhibited the growth of influenza A H1N1 virus, and the CHCl3 extract demonstrated the strongest activity in MDCK cells. CONCLUSION: The H2O or CHCl3 extracts from the stems of J. multifida collected in Myanmar demonstrated the strongest inhibition of influenza A H1N1 viral infection or growth in MDCK cells, respectively. These results indicated that the stems of J. multifida could be regarded as an anti-influenza herbal medicine as well as a potential crude drug source for the development of anti-influenza compounds.


Subject(s)
Antiviral Agents/therapeutic use , Influenza A Virus, H1N1 Subtype/drug effects , Influenza, Human/drug therapy , Phytotherapy , Plant Extracts/therapeutic use , Animals , Antiviral Agents/pharmacology , Cell Line , Dogs , Humans , Influenza, Human/virology , Madin Darby Canine Kidney Cells , Medicine, Traditional , Myanmar , Plant Extracts/pharmacology , Plant Stems
11.
J Biol Chem ; 290(46): 28001-17, 2015 Nov 13.
Article in English | MEDLINE | ID: mdl-26446794

ABSTRACT

Influenza represents a substantial threat to human health and requires novel therapeutic approaches. Bakuchiol is a phenolic isoprenoid compound present in Babchi (Psoralea corylifolia L.) seeds. We examined the anti-influenza viral activity of synthetic bakuchiol using Madin-Darby canine kidney cells. We found that the naturally occurring form, (+)-(S)-bakuchiol, and its enantiomer, (-)-(R)-bakuchiol, inhibited influenza A viral infection and growth and reduced the expression of viral mRNAs and proteins in these cells. Furthermore, these compounds markedly reduced the mRNA expression of the host cell influenza A virus-induced immune response genes, interferon-ß and myxovirus-resistant protein 1. Interestingly, (+)-(S)-bakuchiol had greater efficacy than (-)-(R)-bakuchiol, indicating that chirality influenced anti-influenza virus activity. In vitro studies indicated that bakuchiol did not strongly inhibit the activities of influenza surface proteins or the M2 ion channel, expressed in Chinese hamster ovary cells. Analysis of luciferase reporter assay data unexpectedly indicated that bakuchiol may induce some host cell factor(s) that inhibited firefly and Renilla luciferases. Next generation sequencing and KeyMolnet analysis of influenza A virus-infected and non-infected cells exposed to bakuchiol revealed activation of transcriptional regulation by nuclear factor erythroid 2-related factor (Nrf), and an Nrf2 reporter assay showed that (+)-(S)-bakuchiol activated Nrf2. Additionally, (+)-(S)-bakuchiol up-regulated the mRNA levels of two Nrf2-induced genes, NAD(P)H quinone oxidoreductase 1 and glutathione S-transferase A3. These findings demonstrated that bakuchiol had enantiomer-selective anti-influenza viral activity involving a novel effect on the host cell oxidative stress response.


Subject(s)
Antiviral Agents/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H3N2 Subtype/drug effects , Influenza, Human/virology , Oxidative Stress/drug effects , Phenols/pharmacology , Terpenes/pharmacology , Animals , Antiviral Agents/chemistry , CHO Cells , Cricetinae , Cricetulus , Dogs , Glutathione Transferase/metabolism , High-Throughput Nucleotide Sequencing , Humans , Interferon-beta/metabolism , Madin Darby Canine Kidney Cells , NAD(P)H Dehydrogenase (Quinone) , NF-E2-Related Factor 2/metabolism , Orthomyxoviridae Infections/virology , Phenols/chemistry , RNA, Messenger/drug effects , RNA, Viral/drug effects , Terpenes/chemistry , Transcription, Genetic
12.
Pediatr Allergy Immunol ; 27(3): 276-82, 2016 05.
Article in English | MEDLINE | ID: mdl-26764899

ABSTRACT

BACKGROUND: Oral immunotherapy (OIT) induces desensitization and/or tolerance in patients with persistent food allergy, but the biomarkers of clinical outcomes remain obscure. Although OIT-induced changes in serum allergen-specific IgE and IgG4 levels have been investigated, the response of other allergen-specific IgG subclasses and IgA during OIT remains obscure. METHODS: A pilot study was conducted to investigate egg OIT-induced changes in allergen-specific IgE, IgG subclasses, and IgA levels and search for possible prediction biomarkers of desensitization. We measured serum levels of egg white-, ovomucoid-, and ovalbumin-specific IgE, IgA, and IgG subclasses by high-sensitivity allergen microarray in 26 children with egg allergy who received rush OIT. RESULTS: Allergen-specific IgE gradually decreased while IgG4 increased during 12-month OIT. Serum levels of IgG1, IgG3, and IgA increased significantly after the rush phase, then decreased during the maintenance phase. IgG2 levels changed in a manner similar to that of IgG4. In particular, significantly high fold increases in egg white-specific IgG1, relative to baseline, after the rush phase and high IgA levels before OIT were observed in responders, compared with low-responders to OIT. Patients who could not keep desensitization showed relatively small changes in all immunoglobulin levels during OIT. CONCLUSION: The response to OIT was associated with significant increases in serum allergen-specific IgG1 levels after rush phase and high baseline IgA levels, compared with small changes in immunoglobulin response in low-responders. The characteristic IgG1 changes and IgA levels in the responders could be potentially useful biomarkers for the prediction of positive clinical response to OIT.


Subject(s)
Allergens/immunology , Desensitization, Immunologic/methods , Egg Hypersensitivity/immunology , Immunoglobulins/blood , Administration, Oral , Biomarkers/blood , Child , Child, Preschool , Female , Humans , Male , Pilot Projects , Treatment Outcome
13.
Article in English | MEDLINE | ID: mdl-26460316

ABSTRACT

Influenza A virus (IAV) causes significant morbidity and mortality. The knowledge gained within the last decade on the pandemic IAV(H1N1)2009 improved our understanding not only of the viral pathogenicity but also the host cellular factors involved in the pathogenicity of multiorgan failure (MOF), such as cellular trypsin-type hemagglutinin (HA0) processing proteases for viral multiplication, cytokine storm, metabolic disorders and energy crisis. The HA processing proteases in the airway and organs for all IAV known to date have been identified. Recently, a new concept on the pathogenicity of MOF, the "influenza virus-cytokine-trypsin" cycle, has been proposed involving up-regulation of trypsin through pro-inflammatory cytokines, and potentiation of viral multiplication in various organs. Furthermore, the relationship between causative factors has been summarized as the "influenza virus-cytokine-trypsin" cycle interconnected with the "metabolic disorders-cytokine" cycle. These cycles provide new treatment concepts for ATP crisis and MOF. This review discusses IAV pathogenicity on cellular proteases, cytokines, metabolites and therapeutic options.


Subject(s)
Antiviral Agents/therapeutic use , Cytokines/metabolism , Host-Pathogen Interactions , Influenza A virus/pathogenicity , Peptide Hydrolases/metabolism , Animals , Antiviral Agents/pharmacology , Host-Pathogen Interactions/drug effects , Humans , Influenza A virus/drug effects , Influenza A virus/physiology , Virulence/drug effects
14.
J Allergy Clin Immunol ; 134(4): 824-830.e6, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25282564

ABSTRACT

BACKGROUND: Recent studies have suggested that epidermal barrier dysfunction contributes to the development of atopic dermatitis (AD) and other allergic diseases. OBJECTIVE: We performed a prospective, randomized controlled trial to investigate whether protecting the skin barrier with a moisturizer during the neonatal period prevents development of AD and allergic sensitization. METHODS: An emulsion-type moisturizer was applied daily during the first 32 weeks of life to 59 of 118 neonates at high risk for AD (based on having a parent or sibling with AD) who were enrolled in this study. The onset of AD (eczematous symptoms lasting >4 weeks) and eczema (lasting >2 weeks) was assessed by a dermatology specialist on the basis of the modified Hanifin and Rajka criteria. The primary outcome was the cumulative incidence of AD plus eczema (AD/eczema) at week 32 of life. A secondary outcome, allergic sensitization, was evaluated based on serum levels of allergen-specific IgE determined by using a high-sensitivity allergen microarray of diamond-like carbon-coated chips. RESULTS: Approximately 32% fewer neonates who received the moisturizer had AD/eczema by week 32 than control subjects (P = .012, log-rank test). We did not show a statistically significant effect of emollient on allergic sensitization based on the level of IgE antibody against egg white at 0.34 kUA/L CAP-FEIA equivalents. However, the sensitization rate was significantly higher in infants who had AD/eczema than in those who did not (odds ratio, 2.86; 95% CI, 1.22-6.73). CONCLUSION: Daily application of moisturizer during the first 32 weeks of life reduces the risk of AD/eczema in infants. Allergic sensitization during this time period is associated with the presence of eczematous skin but not with moisturizer use.


Subject(s)
Dermatitis, Atopic/prevention & control , Egg Hypersensitivity/prevention & control , Emulsions/administration & dosage , Epidermis/drug effects , Adult , Allergens/immunology , Dermatitis, Atopic/immunology , Egg Hypersensitivity/immunology , Egg Proteins/immunology , Emulsions/adverse effects , Epidermis/immunology , Epidermis/pathology , Female , Humans , Immunoglobulin E/blood , Infant, Newborn , Japan , Male , Microarray Analysis , Risk
15.
Am J Physiol Heart Circ Physiol ; 307(6): H922-32, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25038143

ABSTRACT

We have previously reported that ectopic trypsin in the myocardium triggers acute myocarditis after influenza A virus (IAV) infection. As myocarditis is a common precursor to dilated cardiomyopathy (DCM), the aim of the present study was to investigate the influence of trypsin on the progression of DCM after IAV infection. IAV-infected mice treated with saline or trypsin inhibitor were euthanized on days 0, 9, 20, 40 and 60 postinfection. Trypsin expression colocalized with myocardial inflammatory loci and IAV-induced myocarditis peaked on day 9 postinfection and alleviated by day 20 but persisted until day 60 postinfection, even though replication of IAV was not detected from day 20 postinfection. Similar time courses were observed for the activation of pro-matrix metalloproteinase (pro-MMP)-9 and expression of the proinflammatory cytokines IL-6, IL-1ß, and TNF-α. Degradation of collagen type I, proliferation of ventricular interstitial collagen, and expression of collagen type I and III mRNA increased significantly during acute and chronic phases; collagen type III mRNA increased more significantly than collagen type I mRNA. Cardiac function progressively deteriorated with progressive left ventricular dilation. The trypsin inhibitor aprotinin suppressed pro-MMP-9 activation and cytokine release, alleviated myocardial inflammation, and restored collagen metabolism during acute and chronic phases of myocarditis. This effectively prevented ventricular dilation and improved cardiac function. These results suggest that ectopic trypsin in the myocardium promoted DCM through chronic activation of pro-MMP-9, persistent induction of cytokines, and mediation of collagen remodeling. Pharmacological inhibition of trypsin activity might be a promising approach for the prevention of viral cardiomyopathy.


Subject(s)
Cardiomyopathy, Dilated/prevention & control , Influenza A Virus, H1N1 Subtype/pathogenicity , Myocarditis/prevention & control , Myocardium/enzymology , Orthomyxoviridae Infections/complications , Trypsin/metabolism , Animals , Cardiomyopathy, Dilated/enzymology , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/physiopathology , Cardiomyopathy, Dilated/virology , Collagen Type I/genetics , Collagen Type I/metabolism , Collagen Type III/genetics , Collagen Type III/metabolism , Disease Models, Animal , Disease Progression , Enzyme Precursors/metabolism , Hypertrophy, Left Ventricular/enzymology , Hypertrophy, Left Ventricular/prevention & control , Hypertrophy, Left Ventricular/virology , Inflammation Mediators/metabolism , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Male , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Inbred BALB C , Myocarditis/enzymology , Myocarditis/genetics , Myocarditis/physiopathology , Myocarditis/virology , Orthomyxoviridae Infections/virology , RNA, Messenger/metabolism , Time Factors , Trypsin Inhibitors/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Ventricular Dysfunction, Left/enzymology , Ventricular Dysfunction, Left/prevention & control , Ventricular Dysfunction, Left/virology , Ventricular Function, Left , Ventricular Remodeling , Virus Replication
17.
Biochim Biophys Acta ; 1824(1): 186-94, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21801859

ABSTRACT

Influenza A virus (IAV) is one of the most common infectious pathogens in humans. Since the IVA genome does not have the processing protease for the viral hemagglutinin (HA) envelope glycoprotein precursors, entry of this virus into cells and infectious organ tropism of IAV are primarily determined by host cellular trypsin-type HA processing proteases. Several secretion-type HA processing proteases for seasonal IAV in the airway, and ubiquitously expressed furin and pro-protein convertases for highly pathogenic avian influenza (HPAI) virus, have been reported. Recently, other HA-processing proteases for seasonal IAV and HPAI have been identified in the membrane fraction. These proteases proteolytically activate viral multiplication at the time of viral entry and budding. In addition to the role of host cellular proteases in IAV pathogenicity, IAV infection results in marked upregulation of cellular trypsins and matrix metalloproteinase-9 in various organs and cells, particularly endothelial cells, through induced pro-inflammatory cytokines. These host cellular factors interact with each other as the influenza virus-cytokine-protease cycle, which is the major mechanism that induces vascular hyperpermeability and multiorgan failure in severe influenza. This mini-review discusses the roles of cellular proteases in the pathogenesis of IAV and highlights the molecular mechanisms of upregulation of trypsins as effective targets for the control of IAV infection. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.


Subject(s)
Host-Pathogen Interactions/immunology , Influenza, Human/complications , Influenza, Human/etiology , Multiple Organ Failure/etiology , Peptide Hydrolases/physiology , Animals , Antigen Presentation/physiology , Birds , Capillary Permeability/immunology , Capillary Permeability/physiology , Humans , Immune System/enzymology , Immune System/metabolism , Influenza A virus/immunology , Influenza A virus/metabolism , Influenza A virus/pathogenicity , Influenza A virus/physiology , Influenza in Birds/virology , Influenza, Human/enzymology , Models, Biological , Multiple Organ Failure/genetics , Multiple Organ Failure/immunology , Multiple Organ Failure/metabolism , Peptide Hydrolases/metabolism
18.
J Virol ; 86(20): 10924-34, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22896605

ABSTRACT

We previously reported that the macrolide antibiotic clarithromycin (CAM) enhanced the mucosal immune response in pediatric influenza, particularly in children treated with the antiviral neuraminidase inhibitor oseltamivir (OSV) with low production of mucosal antiviral secretory IgA (S-IgA). The aims of the present study were to confirm the effects of CAM on S-IgA immune responses, by using influenza A virus (IAV) H1N1-infected mice treated with or without OSV, and to determine the molecular mechanisms responsible for the induction of mucosal IgA class switching recombination in IAV-infected CAM-treated mice. The anti-IAV S-IgA responses and expression levels of IgA class switching recombination-associated molecules were examined in bronchus-lymphoid tissues and spleens of infected mice. We also assessed neutralization activities of S-IgA against IAV. Data show that CAM enhanced anti-IAV S-IgA induction in the airway of infected mice and restored the attenuated antiviral S-IgA levels in OSV-treated mice to the levels in the vehicle-treated mice. The expression levels of B-cell-activating factor of the tumor necrosis factor family (BAFF) molecule on mucosal dendritic cells as well as those of activation-induced cytidine deaminase and Iµ-Cα transcripts on B cells were enhanced by CAM, compared with the levels without CAM treatment, but CAM had no effect on the expression of the BAFF receptor on B cells. Enhancement by CAM of neutralization activities of airway S-IgA against IAV in vitro and reinfected mice was observed. This study identifies that CAM enhances S-IgA production and neutralizing activities through the induction of IgA class switching recombination and upregulation of BAFF molecules in mucosal dendritic cells in IAV-infected mice.


Subject(s)
B-Cell Activating Factor/metabolism , Clarithromycin/pharmacology , Immunoglobulin A/immunology , Immunoglobulin Class Switching , Influenza A Virus, H1N1 Subtype/immunology , Orthomyxoviridae Infections/immunology , Administration, Oral , Animals , Antibodies, Neutralizing/immunology , Antiviral Agents/pharmacology , B-Cell Activating Factor/immunology , Bronchi/immunology , Clarithromycin/administration & dosage , Cytidine Deaminase/biosynthesis , Dendritic Cells/immunology , Female , Immunity, Mucosal/drug effects , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections/drug therapy , Oseltamivir/pharmacology , Spleen/immunology , Tumor Necrosis Factor-alpha/immunology
19.
J Allergy Clin Immunol ; 130(1): 113-21.e2, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22464644

ABSTRACT

BACKGROUND: To design a rational allergy prevention program, it is important to determine whether allergic sensitization starts in utero under the maternal immune system. OBJECTIVE: To investigate the origin of allergen-specific IgE antibodies in cord blood (CB) and maternofetal transfer of immunoglobulins. METHODS: The levels of food and inhalant allergen-specific IgE, IgA, IgG, and IgG(4) antibodies in CB and maternal blood (MB) from 92 paired neonates and mothers were measured by using a novel allergen microarray of diamond-like-carbon-coated chip, with high-sensitivity detection of allergen-specific antibodies and allergen profiles. RESULTS: The levels of allergen-specific IgE antibodies against food and inhalant allergens and allergen profiles were identical in CB and newborn blood, but the levels and profiles, specifically against inhalant allergens, were different from those in MB. The level of allergen-specific IgA antibodies was below the detection levels in CB despite clear detection in MB. Therefore, contamination with MB in CB was excluded on the basis of extremely low levels of IgA antibodies in CB and the obvious mismatch of the allergen-specific IgE and IgA profiles between CB and MB. However, the levels of allergen-specific IgG and IgG(4) antibodies and their allergen profiles were almost identical in both MB and CB. CONCLUSION: Allergen-specific levels of IgE and IgA antibodies and their allergen profiles analyzed by the diamond-like-carbon allergen chip indicate that IgE antibodies in CB are of fetal origin. Food-allergen specific IgE antibodies were detected more often than inhalant-allergen specific IgE antibodies in CB, the reason of which remains unclarified.


Subject(s)
Allergens/immunology , Fetal Blood/immunology , Immunoglobulin E/blood , Oligonucleotide Array Sequence Analysis/methods , Adult , Allergens/genetics , Antibody Specificity , Female , Food Hypersensitivity/etiology , Food Hypersensitivity/immunology , Humans , Immunity, Maternally-Acquired , Infant, Newborn , Pregnancy
20.
Nutrients ; 15(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36771462

ABSTRACT

Food allergy is one of the major existing health problems, but no effective treatment is available. In the current work, a murine model that closely mimics pathogenesis of human food allergy and its quantifiable diagnostic parameter design, even for mild hypersensitivity reactions, were established. BALB/c mice were epicutaneously sensitized with 1 mg chicken egg ovomucoid (OVM) or cow's milk casein, free of adjuvants, five times a week for two consecutive weeks. Eleven days later, allergen-specific IgG1 and IgE in serum were measured by ELISA. On day 25, 20 mg OVM or 12 mg α-casein was administered orally, and allergic reactions such as the fall in rectal temperature, symptom scores during 90-120 min, serum mast cell protease-1 and cytokine levels were monitored. The detection of mild allergic reactions due to adjuvant-free allergen sensitization and oral allergen challenge routes was amplified by the combination of oral allergen and aspirin administration simultaneously or aspirin administration within 15-30 min before an allergen challenge. Quantification of the maximum symptom score and the frequency of symptoms during the monitoring period improved evaluation accuracy of food allergy signals. Based on these results, efficacy of casein oral immunotherapy for cow's milk allergies, which are generally difficult to detect, was monitored adequately.


Subject(s)
Food Hypersensitivity , Milk Hypersensitivity , Humans , Female , Cattle , Mice , Animals , Allergens , Caseins , Aspirin , Disease Models, Animal , Food Hypersensitivity/diagnosis , Food Hypersensitivity/therapy , Milk Hypersensitivity/diagnosis , Milk Hypersensitivity/therapy , Adjuvants, Immunologic , Ovomucin , Immunotherapy
SELECTION OF CITATIONS
SEARCH DETAIL