Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Neurosci Res ; 95(1-2): 345-354, 2017 01 02.
Article in English | MEDLINE | ID: mdl-27870444

ABSTRACT

Sex differences in adult brain function are frequently determined developmentally through the actions of steroid hormones during sensitive periods of prenatal and early postnatal life. In rodents, various cellular end points of the developing brain are affected by estradiol that is derived from the aromatization of circulating testosterone and/or synthesized within the brain. We have previously described a sex difference in neurogenesis in the hippocampus of neonatal rats that is modulated by estradiol. In this report, we examined a potential downstream regulator of the effects of estradiol on hippocampal cell proliferation by measuring gene expression of brain-derived neurotrophin (BDNF) in male and female neonatal rats in response to estradiol. Males had higher baseline BDNF gene expression in dentate gyrus and CA1 regions of the hippocampus compared with females. Neonatal administration of exogenous estradiol resulted in opposite effects on BDNF expression in these areas of the neonatal hippocampus, such that BDNF transcripts increased in CA1 but decreased in dentate. Blocking endogenous estradiol signaling by antagonizing estrogen receptors decreased BDNF expression in the dentate of males, but not females, and had no effect in CA1. Interestingly, this sex difference and response to estradiol was not mirrored by translational output, as no differences in BDNF precursor peptide were observed. The sex- and region-specific effects of estradiol on BDNF expression in the neonatal hippocampus suggest a complex functional relationship between these pleiotropic factors in regulating developmental neurogenesis. © 2016 Wiley Periodicals, Inc.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Estradiol/pharmacology , Gene Expression Regulation, Developmental/drug effects , Hippocampus , Sex Characteristics , Animals , Animals, Newborn , Brain-Derived Neurotrophic Factor/genetics , Female , Gene Expression Regulation, Developmental/physiology , Hippocampus/drug effects , Hippocampus/growth & development , Hippocampus/metabolism , Male , Neurogenesis/drug effects , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley
2.
Horm Behav ; 76: 3-10, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25917865

ABSTRACT

This article is part of a Special Issue "SBN 2014". Discerning the biologic origins of neuroanatomical sex differences has been of interest since they were first reported in the late 60's and early 70's. The centrality of gonadal hormone exposure during a developmental critical window cannot be denied but hormones are indirect agents of change, acting to induce gene transcription or modulate membrane bound signaling cascades. Sex differences in the brain include regional volume differences due to differential cell death, neuronal and glial genesis, dendritic branching and synaptic patterning. Early emphasis on mechanism therefore focused on neurotransmitters and neural growth factors, but by and large these endpoints failed to explain the origins of neural sex differences. More recently evidence has accumulated in favor of inflammatory mediators and immune cells as principle regulators of brain sexual differentiation and reveal that the establishment of dimorphic circuits is not cell autonomous but instead requires extensive cell-to-cell communication including cells of non-neuronal origin. Despite the multiplicity of cells involved the nature of the sex differences in the neuroanatomical endpoints suggests canalization, a process that explains the robustness of individuals in the face of intrinsic and extrinsic variability. We propose that some neuroanatomical endpoints are canalized to enhance sex differences in the brain by reducing variability within one sex while also preventing the sexes from diverging too greatly. We further propose mechanisms by which such canalization could occur and discuss what relevance this may have to sex differences in behavior.


Subject(s)
Brain/physiology , Sex Characteristics , Sex Differentiation/physiology , Animals , Brain/embryology , Brain/metabolism , Humans
3.
Neurobiol Dis ; 72 Pt B: 136-43, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24892888

ABSTRACT

Sexual differentiation of the developing brain organizes the neural architecture differently between males and females, and the main influence on this process is exposure to gonadal steroids during sensitive periods of prenatal and early postnatal development. Many molecular and cellular processes are influenced by steroid hormones in the developing brain, including gene expression, cell birth and death, neurite outgrowth and synaptogenesis, and synaptic activity. Perturbations in these processes can alter neuronal excitability and circuit activity, leading to increased seizure susceptibility and the promotion of pathological processes that constitute epileptogenesis. In this review, we will provide a general overview of sex differences in the early developing brain that may be relevant for altered seizure susceptibility in early life, focusing on limbic areas of the brain. Sex differences that have the potential to alter the progress of epileptogenesis are evident at molecular and cellular levels in the developing brain, and include differences in neuronal excitability, response to environmental insult, and epigenetic control of gene expression. Knowing how these processes differ between the sexes can help us understand fundamental mechanisms underlying gender differences in seizure susceptibility and epileptogenesis.


Subject(s)
Brain , Disease Susceptibility , Epilepsy/etiology , Epilepsy/pathology , Sex Characteristics , Brain/growth & development , Brain/metabolism , Brain/pathology , Epilepsy/metabolism , Female , Gonadal Steroid Hormones/metabolism , Humans , Male
4.
Behav Neurosci ; 135(6): 782-803, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34323517

ABSTRACT

Loss-of-function mutations in the synaptic protein neurexin1α (NRXN1α) are associated with several neurodevelopmental disorders, including autism spectrum disorder (ASD), schizophrenia, and attention-deficit hyperactivity disorder (ADHD), and many of these disorders are defined by core deficits in social cognition. Mouse models of Nrxn1α deficiency are not amenable to studying aspects of social cognition because, in general, mice do not engage in complex social interactions such as social play or prosocial helping behaviors. Rats, on the contrary, engage in these complex, well-characterized social behaviors. Using the Nrxn1tm1Sage Sprague Dawley rat, we tested a range of cognitive and social behaviors in juveniles with haplo- or biallelic Nrxn1α mutation. We found a deficit in ultrasonic vocalizations (USVs) of male and female neonatal rats with Nrxn1α deficiency. A male-specific deficit in social play was observed in Nrxn1α-deficient juveniles, although sociability and social discrimination were unaltered. Nurturing behavior induced by exposure to pups was enhanced in male and female juveniles with biallelic Nrxn1α mutation. Performance in tasks of prosocial helping behavior and food retrieval indicated severe deficits in learning and cognition in juveniles with biallelic Nrxn1α mutation, and a less severe deficit in haploinsufficient rats, although Pavlovian learning was altered only in haploinsufficient males. We also observed a male-specific increase in mobility and object investigation in juveniles with complete Nrxn1α deficiency. Together, these observations more fully characterize the Nrxn1tm1Sage Sprague Dawley rat as a model for Nrxn1α-related neurodevelopmental disorders, and support a rationale for the juvenile rat as a more appropriate model for disorders that involve core deficits in complex social behaviors. (PsycInfo Database Record (c) 2021 APA, all rights reserved).


Subject(s)
Autism Spectrum Disorder , Neurodevelopmental Disorders , Animals , Autism Spectrum Disorder/genetics , Female , Learning , Male , Mice , Neurodevelopmental Disorders/genetics , Rats , Rats, Sprague-Dawley , Social Behavior
5.
eNeuro ; 8(5)2021.
Article in English | MEDLINE | ID: mdl-34417284

ABSTRACT

Neuroscience has been transformed by the ability to genetically modify inbred mice, including the ability to express fluorescent markers specific to cell types or activation states. This approach has been put to particularly good effect in the study of the innate immune cells of the brain, microglia. These specialized macrophages are exceedingly small and complex, but also highly motile and mobile. To date, there have been no tools similar to those in mice available for studying these fundamental cells in the rat brain, and we seek to fill that gap with the generation of the genetically modified Sprague Dawley rat line: SD-Tg(Iba1-EGFP)Mmmc Using CRISPR-Cas/9 technology, we knocked in EGFP to the promoter of the gene Iba1 With four male and three female founders confirmed by quantitative PCR analysis to have appropriate and specific insertion, we established a breeding colony with at least three generations of backcrosses to obtain stable and reliable Iba1-EGFP expression. The specificity of EGFP expression to microglia was established by flow cytometry for CD45low/CD11b+ cells and by immunohistochemistry. Microglial EGFP expression was detected in neonates and persisted into adulthood. Blood macrophages and monocytes were found to express low levels of EGFP, as expected. Last, we show that EGFP expression is suitable for live imaging of microglia processes in acute brain slices and via intravital two-photon microscopy.


Subject(s)
Microglia , Rodentia , Animals , Female , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Rats , Rats, Sprague-Dawley , Rats, Transgenic
6.
Biol Sex Differ ; 11(1): 30, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32487149

ABSTRACT

The hippocampus is central to spatial learning and stress responsiveness, both of which differ in form and function in males versus females, yet precisely how the hippocampus contributes to these sex differences is largely unknown. In reproductively mature individuals, sex differences in the steroid hormone milieu undergirds many sex differences in hippocampal-related endpoints. However, there is also evidence for developmental programming of adult hippocampal function, with a central role for androgens as well as their aromatized byproduct, estrogens. These include sex differences in cell genesis, synapse formation, dendritic arborization, and excitatory/inhibitory balance. Enduring effects of steroid hormone modulation occur during two developmental epochs, the first being the classic perinatal critical period of sexual differentiation of the brain and the other being adolescence and the associated hormonal changes of puberty. The cellular mechanisms by which steroid hormones enduringly modify hippocampal form and function are poorly understood, but we here review what is known and highlight where attention should be focused.


Subject(s)
Androgens , Hippocampus/growth & development , Animals , Humans , Steroids
7.
Gen Comp Endocrinol ; 139(1): 72-84, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15474538

ABSTRACT

Estradiol plays a key role in the control of many behavioral and physiological aspects of reproduction therefore the expression of cytochrome P450 aromatase (CYP19), the enzyme responsible for the conversion of androgens to estrogens, is of vital interest. The zebrafish, and many other teleosts, have two aromatase genes (CYP19A1 and CYP19A2) that are expressed predominantly in the ovary and brain, respectively, however, the physiological impact of extra-gonadal aromatase has been poorly described. In this study, in situ hybridizations of whole-mount and paraffin sections of adult zebrafish brains, pituitaries, and ovarian follicles showed that CYP19A2 was strongly expressed in the olfactory bulb (OB), ventral telencephalon (TEL), preoptic area (POA), and ventral/caudal hypothalamic zone (HT) of the brain, and in the anterior and posterior lobes of the pituitary. The regional distribution of the CYP19A2 mRNA did not vary with sex however transcript abundance varied within (male "high expressers" had much higher expression in the OB, TEL, and HT than in "low expressers") and between sexes (higher in OB, TEL, and HT of males than in females). In situ hybridizations of CYP19A1 failed to develop a signal in the brain or pituitary but were detectable by RT-PCR. CYP19A1 was highly expressed in Stage III B follicles (>500 nm) with significantly lower levels in the Stage IV follicles (>680 nm), Stage III A follicles (>350 nm), and Stage I and II follicles (350 microm) which were embedded in connective tissues. The differential expression of the aromatase genes, particularly CYP19A2 in the brain, suggests that the two aromatase genes play different roles in the reproductive behavior and/or physiology of bony fish.


Subject(s)
Aromatase/metabolism , Zebrafish Proteins/metabolism , Zebrafish/metabolism , Animals , Aromatase/genetics , Brain/enzymology , Female , In Situ Hybridization , Isoenzymes/genetics , Isoenzymes/metabolism , Male , Ovarian Follicle/enzymology , Ovarian Follicle/physiology , Pituitary Gland/enzymology , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sex Factors , Tissue Distribution , Zebrafish/physiology , Zebrafish Proteins/genetics
8.
Biol Reprod ; 71(3): 1026-35, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15163612

ABSTRACT

To address the complexity of the origin of the GnRH system in perciforms, we investigated the ontogenic expression of three GnRHs in gilthead seabream. Using in situ hybridization, chicken (c) GnRH-II mRNA-expressing cells were detected in the hindbrain at 1.5 days postfertilization (DPF) and in the midbrain at 2 DPF and thereafter; the hindbrain signals became undetectable after 10 DPF. Salmon (s) GnRH mRNA-expressing cells were first seen in the olfactory placode at 3 DPF, started caudal migration at 14 DPF, and reached the preoptic areas at 59 DPF. Seabream (sb) GnRH mRNA-expressing cells were first detected in the terminal nerve ganglion cells (TNgc), ventral part of the ventral telencephalon, nucleus preopticus parvocellularis, and thalamus at 39 DPF, and extended to the nucleus preopticus magnocellularis at 43 DPF, ventrolateral hypothalamus at 51 DPF, and nucleus lateralis tuberis and posterior tuberculum at 59 DPF. Coexpression of sbGnRH and sGnRH transcripts was found in the TNgc. Using real-time fluorescence-based quantitative polymerase chain reaction, transcript levels of cGnRH-II and sGnRH were first detected at 1 and 1.5 DPF, respectively, and increased and remained high thereafter. Transcript levels of sbGnRH remained low after first detection at 1 DPF. Furthermore, these GnRH expression profiles were correlated with the expression profiles of reproduction-related genes in which at least four concomitant increases of GnRH, GnRH receptor, gonadotropin, gonadotropin receptor, and Vasa transcripts were found at 5, 8, 14, and 28 DPF. Our data provide an expanded view of the ontogeny of the GnRH system and reproductive axis in perciforms.


Subject(s)
Gonadotropin-Releasing Hormone/genetics , Hypothalamo-Hypophyseal System/embryology , Hypothalamo-Hypophyseal System/physiology , Pituitary Gland/embryology , Pituitary Gland/physiology , Sea Bream/physiology , Animals , Aquaculture , Female , Follicle Stimulating Hormone, beta Subunit/genetics , Gene Expression Regulation, Developmental , Luteinizing Hormone, beta Subunit/genetics , Ovary/embryology , Ovary/physiology , RNA Helicases/genetics , RNA, Messenger/analysis , Receptors, FSH/genetics , Receptors, LH/genetics , Receptors, LHRH/genetics , Reproduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL