Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 192
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Pharmacol Rev ; 75(4): 739-757, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36707250

ABSTRACT

Over the past few decades, humankind has constantly encountered new viral species that create havoc in the socioeconomic balance worldwide. Among the method to combat these novel viral infections, fast and point-of-care diagnosis is of prime importance to contain the spreading of viral infections. However, most sensitive diagnostic systems for viral infections are time-consuming and require well-trained professionals, making it difficult for the patients. In recent years nanozymes emerged as promising therapeutic and fast diagnostic tools due to their multienzyme-like catalytic performance. Nanozymes can be designed using inorganic or organic components with tailorable physicochemical surface properties, enabling the attachment of various molecules and species on the surface of the nanozyme for specific recognition. In addition to the composition, the multienzyme-like catalytic performance can be modulated by the shape and size of the nanoparticles. Due to their multicatalytic abilities, nanozymes can be used for fast diagnosis and therapy for viral infections. Here we attempt to focus on the insights and recent explorations on the advances in designing various types of nanozymes as a theranostic tool for viral infections. Thus, this review intends to generate interest in the clinical translation of nanozymes as a theranostic tool for viral infections by providing knowledge about the multidisciplinary potential of nanozyme. SIGNIFICANCE STATEMENT: The multienzyme-like properties of nanozymes suggest their role in diagnosing and treating various diseases. Although the potential roles of nanozymes for various viral infections have been studied in the last few decades, no review provides recent explorations on designing various types of nanozymes for the detection and treatment of viral infections. This review provides insights into designing nanozymes to diagnose and treat viral infections, assisting future researchers in developing clinically translatable nanozymes to combat novel viral infections.


Subject(s)
Nanoparticles , Humans , Nanoparticles/chemistry , Catalysis , Surface Properties
2.
J Nanobiotechnology ; 22(1): 323, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38849931

ABSTRACT

BACKGROUND: The non-toxic self-crosslinked hydrogel films designed from biocompatible materials allow for controlled drug release and have gathered remarkable attention from healthcare professionals as wound dressing materials. Thus, in the current study the chitosan (CS) film is infused with oil-in-water Pickering emulsion (PE) loaded with bioactive compound quercetin (Qu) and stabilized by dialdehyde cellulose nanocrystal-silver nanoparticles (DCNC-AgNPs). The DCNC-AgNPs play a dual role in stabilizing PE and are involved in the self-crosslinking with CS films. Also, this film could combine the advantage of the controlled release and synergistic wound-healing effect of Qu and AgNPs. RESULTS: The DCNC-AgNPs were synthesized using sodium periodate oxidation of CNC. The DCNC-AgNPs were used to stabilize oil-in-water PE loaded with Qu in its oil phase by high speed homogenization. Stable PEs were prepared by 20% v/v oil: water ratio with maximum encapsulation of Qu in the oil phase. The Qu-loaded PE was then added to CS solution (50% v/v) to prepare self-crosslinked films (CS-PE-Qu). After grafting CS films with PE, the surface and cross-sectional SEM images show an inter-penetrated network within the matrix between DCNC and CS due to the formation of a Schiff base bond between the reactive aldehyde groups of DCNC-AgNPs and amino groups of CS. Further, the addition of glycerol influenced the extensibility, swelling ratio, and drug release of the films. The fabricated CS-PE-Qu films were analyzed for their wound healing and tissue regeneration potential using cell scratch assay and full-thickness excisional skin wound model in mice. The as-fabricated CS-PE-Qu films showed great biocompatibility, increased HaCat cell migration, and promoted collagen synthesis in HDFa cells. In addition, the CS-PE-Qu films exhibited non-hemolysis and improved wound closure rate in mice compared to CS, CS-Qu, and CS-blank PE. The H&E staining of the wounded skin tissue indicated the wounded tissue regeneration in CS-PE-Qu films treated mice. CONCLUSION: Results obtained here confirm the wound healing benefits of CS-PE-Qu films and project them as promising biocompatible material and well suited for full-thickness wound healing in clinical applications.


Subject(s)
Chitosan , Emulsions , Hydrogels , Metal Nanoparticles , Quercetin , Silver , Skin , Wound Healing , Quercetin/chemistry , Quercetin/pharmacology , Wound Healing/drug effects , Chitosan/chemistry , Animals , Emulsions/chemistry , Mice , Humans , Skin/drug effects , Skin/injuries , Metal Nanoparticles/chemistry , Silver/chemistry , Hydrogels/chemistry , Biocompatible Materials/chemistry , Bandages , Drug Liberation , Drug Delivery Systems/methods , Cellulose/chemistry , Male , Regeneration/drug effects , HaCaT Cells , Oxidation-Reduction , Methylgalactosides
3.
Bioprocess Biosyst Eng ; 47(8): 1393-1407, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38942827

ABSTRACT

The most prevalent form of inflammatory bowel disease (IBD), ulcerative colitis (UC), is characterized by persistent inflammation of the colorectal mucosa. It is asymptomatic, whereas Crohn's disease (CD) causes patchy lesions in the gastrointestinal tract. Men and women suffer equally from ulcerative colitis, which usually strikes in the second and third decades of life and becomes more common in senior citizens. In the present study, we produced zinc oxide nanoparticles using the natural herbal plant, Cassia alata. Zinc oxide nanoparticles have remarkable antimicrobial and antitumor benefits in the field of biomedical science. Furthermore, the synthesized zinc oxide nanoparticles (ZnO NPs) were characterized using UV, XRD, FTIR, and SEM analyses. The XRD analysis confirmed the crystallite nature and purity of the synthesized nanoparticles. Zinc oxide nanoparticles with a uniform size and partially agglomerated morphology were verified by SEM analysis. We investigated the protective effects of environmentally friendly zinc oxide nanoparticles in dextran sodium sulfate-induced ulcerative colitis mouse models. Green synthesized Cassia alata zinc oxide nanoparticles (CA ZnO NPs) reversed weight loss, disease activity index, colon shortening, and colon histological damage. Zinc oxide nanoparticles reduce hypersensitivity, oxidative stress, and inflammation, and protect the mucosal layer. Green synthesized CA ZnO NPs demonstrated protection against dextran sodium sulfate-induced ulcerative colitis via anti-inflammatory activity.


Subject(s)
Cassia , Colitis, Ulcerative , Dextran Sulfate , Disease Models, Animal , Metal Nanoparticles , Zinc Oxide , Animals , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Mice , Cassia/chemistry , Metal Nanoparticles/chemistry , Nanoparticles/chemistry , Male , Plant Extracts/chemistry , Plant Extracts/pharmacology
4.
Angew Chem Int Ed Engl ; : e202411397, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004761

ABSTRACT

The development of environmentally sustainable processes for polymer recycling is of paramount importance in the polymer industry. In particular, the implementation of chemical recycling for thermoset polymers via covalent adaptable networks (CANs), particularly those based on the dynamic hindered urea bond (HUB), has garnered intensive attention from both the academic and industrial sectors. This interest stems from its straightforward chemical structure and reaction mechanism, which are well-suited for commercial polyurethane and polyurea applications. However, a substantial drawback of these CANs is the requisite use of toxic isocyanate curing agents for their synthesis. Herein, we propose a new HUB synthesis pathway involving thiazolidin-2-one and a hindered amine. This ring-opening reaction facilitates the isocyanate-free formation of a HUB and enables sequential reactions with acrylate and epoxide monomers via thiol-Michael and thiol-epoxy click chemistry. The CANs synthesized using this methodology exhibit superior reprocessability, chemical recyclability, and reutilizability, facilitated by specific catalytic and solvent conditions, through the reversible HUB, thiol-Michael addition, and transesterification processes.

5.
Int J Mol Sci ; 24(7)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37047798

ABSTRACT

Most studies related to hemp are focused on Cannabidiol (CBD) and Tetrahydrocannabinol (THC); however, up to 120 types of phytocannabinoids are present in hemp. Hemp leaves contain large amounts of Cannabidiolic acid (CBDA) and Tetrahydrocannabinolic acid (THCA), which are acidic variants of CBD and THC and account for the largest proportion of CBDA. In recent studies, CBDA exhibited anti-hyperalgesia and anti-inflammatory effects. THCA also showed anti-inflammatory and neuroprotective effects that may be beneficial for treating neurodegenerative diseases. CBDA and THCA can penetrate the blood-brain barrier (BBB) and affect the central nervous system. The purpose of this study was to determine whether CBDA and THCA ameliorate Alzheimer's disease (AD)-like features in vitro and in vivo. The effect of CBDA and THCA was evaluated in the Aß1-42-treated mouse model. We observed that Aß1-42-treated mice had more hippocampal Aß and p-tau levels, pathological markers of AD, and loss of cognitive function compared with PBS-treated mice. However, CBDA- and THCA-treated mice showed decreased hippocampal Aß and p-tau and superior cognitive function compared with Aß1-42-treated mice. In addition, CBDA and THCA lowered Aß and p-tau levels, alleviated calcium dyshomeostasis, and exhibited neuroprotective effects in primary neurons. Our results suggest that CBDA and THCA have anti-AD effects and mitigate memory loss and resilience to increased hippocampal Ca2+, Aß, and p-tau levels. Together, CBDA and THCA may be useful therapeutic agents for treating AD.


Subject(s)
Alzheimer Disease , Cannabidiol , Cannabinoids , Cannabis , Neuroprotective Agents , Mice , Animals , Dronabinol/pharmacology , Dronabinol/therapeutic use , Alzheimer Disease/drug therapy , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Cannabinoids/pharmacology , Cannabinoids/therapeutic use , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Amyloid beta-Peptides , Memory Disorders/drug therapy , Memory Disorders/etiology
6.
Microb Pathog ; 168: 105576, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35561980

ABSTRACT

This study was designed to evaluate the potential of using newly purified Salmonella phage-encoded endolysin LysPB32 as novel antibiotic alternative. The endolysin LysPB32 was characterized by analyzing pH and thermal stability, lytic spectrum, antimicrobial activity, and mutant frequency against Salmonella Typhimurium KCCM 40253 (STKCCM), S. Typhimurium ATCC 19585 (STATCC), S. Typhimurium CCARM 8009 (STCCARM), Klebsiella pneumoniae ATCC 23357 (KPATCC), K. pneumoniae CCARM 10237 (KPCCARM), Pseudomonas aeruginosa ATCC 27853 (PAATCC), Listeria monocytogenes ATCC 1911 (LMATCC), Staphylococcus aureus ATCC 25923 (SAATCC), and S. aureus CCARM 3080 (SACCARM). The molecular weight of LysPB32 is 17 kDa that was classified as N-acetyl-ß-d-muramidase. The optimum activity of LysPB32 against the outer membrane (OM) permeabilized STKCCM, STATCC, and STCCARM was observed at 37 °C and pH 6.5. LysPB32 had a broad spectrum of muralytic activity against antibiotic-sensitive STKCCM (41 mOD/min), STATCC (32 mOD/min), and SBKACC (25 mOD/min) and antibiotic-resistant STCCARM (35 mOD/min) and KPCCARM (31 mOD/min). The minimum inhibitory concentrations (MICs) of polymyxin B against STKCCM, STCCARM, and STATCC were decreased by 4-, 4-, and 8-folds, respectively, when treated with LysPB32. The combination of LysPB32 and polymyxin B effectively inhibited the growth of STKCCM, STCCARM, and STATCC after 24 h of incubation at 37 °C, showing 4.9-, 4.4-, and 3.3-log reductions, respectively. The mutant frequency was low in STKCCM, STCCARM, and STATCC treated with combination of LysPB32-polymyxin B system. The results suggest the LysPB32-polymyxin system can be a potential candidate for alternative therapeutic agent to control antibiotic-resistant pathogens.


Subject(s)
Anti-Bacterial Agents , Bacteriophages , Anti-Bacterial Agents/pharmacology , Bacteriophages/genetics , Endopeptidases , Klebsiella pneumoniae , Polymyxin B/pharmacology , Salmonella typhimurium , Staphylococcus aureus
7.
J Nanobiotechnology ; 20(1): 222, 2022 Jul 02.
Article in English | MEDLINE | ID: mdl-35778747

ABSTRACT

Cancer is one of the significant threats to human life. Although various latest technologies are currently available to treat cancer, it still accounts for millions of death each year worldwide. Thus, creating a need for more developed and novel technologies to combat this deadly condition. Nanoparticles-based cancer therapeutics have offered a promising approach to treat cancer effectively while minimizing adverse events. Among various nanoparticles, nanogold (AuNPs) are biocompatible and have proved their efficiency in treating cancer because they can reach tumors via enhanced permeability and retention effect. The size and shape of the AuNPs are responsible for their diverse therapeutic behavior. Thus, to modulate their therapeutic values, the AuNPs can be synthesized in various shapes, such as spheres, cages, flowers, shells, prisms, rods, clusters, etc. Also, attaching AuNPs with single or multiple targeting agents can facilitate the active targeting of AuNPs to the tumor tissue. The AuNPs have been much explored for photothermal therapy (PTT) to treat cancer. In addition to PTT, AuNPs-based nanoplatforms have been investigated for combinational multimodal therapies in the last few years, including photodynamic therapy, chemotherapy, radiotherapy, immunotherapy, etc., to ablate cancer cells. Thus, the present review focuses on the recent advancements in the functionalization of AuNPs-based nanoconstructs for cancer imaging and therapy using combinatorial multimodal approaches to treat various cancers.


Subject(s)
Metal Nanoparticles , Neoplasms , Gold/therapeutic use , Humans , Immunotherapy , Metal Nanoparticles/therapeutic use , Neoplasms/drug therapy , Neoplasms/therapy , Phototherapy
8.
Molecules ; 27(9)2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35566102

ABSTRACT

Black soybean has been used in traditional medicine to treat inflammatory diseases, cancer, and diabetes and as a nutritional source since ancient times. We found that Korean black soybean cultivar A63 has more cyanidin-3-O-glucoside, (C3G), procyanidin B2 (PB2), and epicatechin (EPC) contents than other cultivars and has beneficial effects on cell viability and anti-oxidation. Given the higher concentration of anthocyanidins and their strong anti-oxidant activity, we predicted that A63 extract could relieve inflammatory disease symptoms, including those of atopic dermatitis (AD). Here, we evaluated the anti-AD activity of A63 extract in an oxazolone (OXA)-induced mouse model. A63 extract treatment significantly reduced epidermal thickness and inflammatory cell infiltration, downregulated the expression of AD gene markers, including Interleukin (IL)-4 and IL-5, and restored damaged skin barrier tissues. Furthermore, A63 extract influenced the activation of the signal transducer and activator of transcription (STAT) 3 and STAT6, extracellular regulatory kinase (ERK), and c-Jun N-terminal kinase (JNK) signaling pathways, which play a crucial role in the development of AD. Altogether, our results suggest that A63 can ameliorate AD-like skin inflammation by inhibiting inflammatory cytokine production and STAT3/6 and Mitogen-activated protein kinase (MAPK) signaling and restoring skin barrier function.


Subject(s)
Dermatitis, Atopic , Animals , Cytokines/metabolism , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/metabolism , Disease Models, Animal , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Mice , Mice, Inbred BALB C , Oxazolone/adverse effects , Plant Extracts/metabolism , Skin , Glycine max/metabolism
9.
Bioorg Med Chem Lett ; 36: 127828, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33508466

ABSTRACT

Bioactivity-driven LC/MS-based phytochemical analysis of the root bark extract of Ulmus davidiana var. japonica led to the isolation of 10 compounds including a new coumarin glycoside derivative, ulmusakidian (1). The structure of the new compound was elucidated using extensive spectroscopic analyses via 1D and 2D NMR spectroscopic data interpretations, HR-ESIMS, and chemical transformation. The isolated compounds 1-10 were tested for their antifungal activity against human fungal pathogens Cryptococcus neoformans and Candida albicans. Compounds 9 and 10 showed antifungal activity against C. neoformans, with the lowest minimal inhibitory concentration (MIC) of 12.5-25.0 µg/mL, whereas none of the compounds showed antifungal activity against C. albicans.


Subject(s)
Antifungal Agents/pharmacology , Candida albicans/drug effects , Cryptococcus neoformans/drug effects , Phenols/pharmacology , Plant Extracts/pharmacology , Ulmus/chemistry , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Molecular Structure , Phenols/chemistry , Phenols/isolation & purification , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Roots/chemistry , Structure-Activity Relationship
10.
Bioorg Med Chem Lett ; 50: 128322, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34407463

ABSTRACT

Eight compounds (1-8) including one novel nitrophenyl glycoside, ginkgonitroside (1) were isolated from the leaves of Ginkgo biloba, a popular medicinal plant. The structure of the new compound was characterized using extensive spectroscopic analyses via 1D and 2D NMR data interpretations, HR-ESIMS, and chemical transformation. To the best of our knowledge, the present study is the first to report the presence of nitrophenyl glycosides, which are relatively unique phytochemicals in natural products, in G. biloba. The isolated compounds (1-8) were examined for their effects on the regulation of mesenchymal stem cell (MSC) differentiation. Compounds 1-3 and 8 were able to suppress MSC differentiation toward adipocytes. In contrast, compounds 5 and 8 showed activity promoting osteogenic differentiation of MSCs. These findings demonstrate that the active compounds showed regulatory activity on MSC differentiation between adipocytes and osteocytes.


Subject(s)
Adipocytes/drug effects , Cell Differentiation/drug effects , Ginkgo biloba/chemistry , Glycosides/pharmacology , Mesenchymal Stem Cells/drug effects , Osteoblasts/drug effects , Adipocytes/physiology , Animals , Cell Differentiation/physiology , Cell Line , Glycosides/chemistry , Mice , Osteoblasts/physiology , Plant Leaves/chemistry
11.
Nanotechnology ; 32(45)2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34352732

ABSTRACT

Here, for the first time, we have developed a novel green synthesis method where chitosan acts as a reducing agent and as a colloidal stabilizer, together with polyquaternium for the synthesis of platinum nanoparticles (PtNPs). It was observed that only chitosan-stabilized PtNPs (Ch@PtNPs) were stable up to pH 5, with a diameter of around 89 nm. The diameter of the Ch@PtNPs increased with the increase in pH, indicating the instability of Ch@PtNPs at neutral and alkaline mediums. However, when polyquaternium (PQ) (a cationic polymer) was added as a stabilizer along with chitosan, the diameter of chitosan/polyquaternium stabilized PtNPs (Ch/PQ@PtNPs), i.e. 87 nm, remained almost constant up to pH 9. Similarly, the pH-dependent decrease in the surface charge of Ch@PtNPs was also attenuated with the addition of polyquaternium. This indicates high colloidal stability of Ch/PQ@PtNPs in acidic, neutral, as well as alkaline mediums. It was observed that Ch/PQ@PtNPs exhibited high antibacterial activity againstStaphylococcus aureus, as compared to uncapped PtNPs and Ch@PtNPs. Thus, the addition of PQ increases the antibacterial properties of Ch/PQ@PtNPs againstStaphylococcus aureusby enhancing the stability of PtNPs at neutral pH.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cellulose/analogs & derivatives , Chitosan/chemistry , Platinum/pharmacology , Quaternary Ammonium Compounds/chemistry , Staphylococcus aureus/growth & development , Anti-Bacterial Agents/chemistry , Cellulose/chemistry , Drug Stability , Green Chemistry Technology , Hydrogen-Ion Concentration , Metal Nanoparticles/chemistry , Microbial Sensitivity Tests , Microbial Viability/drug effects , Particle Size , Platinum/chemistry , Staphylococcus aureus/drug effects
12.
J Nanobiotechnology ; 19(1): 100, 2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33836744

ABSTRACT

BACKGROUND: Carvedilol, the anti-hypertensive drug, has poor bioavailability when administered orally. Ethosomes-mediated transdermal delivery is considered a potential route of administration to increase the bioavailability of carvedilol. The central composite design could be used as a tool to optimize ethosomal formulation. Thus, this study aims to optimize carvedilol-loaded ethosomes using central composite design, followed by incorporation of synthesized ethosomes into hydrogels for transdermal delivery of carvedilol. RESULTS: The optimized carvedilol-loaded ethosomes were spherical in shape. The optimized ethosomes had mean particle size of 130 ± 1.72 nm, entrapment efficiency of 99.12 ± 2.96%, cumulative drug release of 97.89 ± 3.7%, zeta potential of - 31 ± 1.8 mV, and polydispersity index of 0.230 ± 0.03. The in-vitro drug release showed sustained release of carvedilol from ethosomes and ethosomal hydrogel. Compared to free carvedilol-loaded hydrogel, the ethosomal gel showed increased penetration of carvedilol through the skin. Moreover, ethosomal hydrogels showed a gradual reduction in blood pressure for 24 h in rats. CONCLUSIONS: Taken together, central composite design can be used for successful optimization of carvedilol-loaded ethosomes formulation, which can serve as the promising transdermal delivery system for carvedilol. Moreover the carvedilol-loaded ethosomal gel can extend the anti-hypertensive effect of carvedilol for a longer time, as compared to free carvedilol, suggesting its therapeutic potential in future clinics.


Subject(s)
Antihypertensive Agents/chemistry , Antihypertensive Agents/pharmacology , Carvedilol/chemistry , Carvedilol/pharmacology , Hydrogels/chemistry , Administration, Cutaneous , Animals , Drug Delivery Systems , Drug Liberation , Particle Size , Rats , Skin/drug effects , Skin Absorption
13.
Molecules ; 26(3)2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33499015

ABSTRACT

Tyrosinase is an enzyme that plays a crucial role in the melanogenesis of humans and the browning of food products. Thus, tyrosinase inhibitors that are useful to the cosmetic and food industries are required. In this study, we have used evolutionary chemical binding similarity (ECBS) to screen a virtual chemical database for human tyrosinase, which resulted in seven potential tyrosinase inhibitors confirmed through the tyrosinase inhibition assay. The tyrosinase inhibition percentage for three of the new actives was over 90% compared to 61.9% of kojic acid. From the structural analysis through pharmacophore modeling and molecular docking with the human tyrosinase model, the pi-pi interaction of tyrosinase inhibitors with conserved His367 and the polar interactions with Asn364, Glu345, and Glu203 were found to be essential for tyrosinase-ligand interactions. The pharmacophore features and the docking models showed high consistency, revealing the possible essential binding interactions of inhibitors to human tyrosinase. We have also presented the activity cliff analysis that successfully revealed the chemical features related to substantial activity changes found in the new tyrosinase inhibitors. The newly identified inhibitors and their structure-activity relationships presented here will help to identify or design new human tyrosinase inhibitors.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Monophenol Monooxygenase/antagonists & inhibitors , Catalytic Domain/genetics , Drug Design , Drug Evaluation, Preclinical , Humans , In Vitro Techniques , Ligands , Molecular Docking Simulation , Monophenol Monooxygenase/chemistry , Monophenol Monooxygenase/genetics , Pyrones/chemistry , Pyrones/pharmacology , Small Molecule Libraries , Structural Homology, Protein , Structure-Activity Relationship , User-Computer Interface
14.
Molecules ; 26(9)2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33922672

ABSTRACT

We conducted a detailed investigation of the influence of the material properties of dynamic polymer network coatings on their self-healing and damage-reporting performance. A series of reversible polyacrylate urethane networks containing the damage-reporting diarylbibenzofuranone unit were synthesized, and their material properties (e.g., indentation modulus, hardness modulus, and glass-transition temperature) were measured conducting nanoindentation and differential scanning calorimetry experiments. The damage-reporting and self-healing performances of the dynamic polymer network coatings exhibited opposite tendencies with respect to the material properties of the polymer network coatings. Soft polymer network coatings with low glass-transition temperature (~10 °C) and indentation hardness (20 MPa) exhibited better self-healing performance (almost 100%) but two times worse damage-reporting properties than hard polymer network coatings with high glass-transition temperature (35~50 °C) and indentation hardness (150~200 MPa). These features of the dynamic polymer network coatings are unique; they are not observed in elastomers, films, and hydrogels, whereby the polymer networks are bound to the substrate surface. Evidence indicates that controlling the polymer's physical properties is a key factor in designing high-performance self-healing and damage-reporting polymer coatings based on mechanophores.

15.
Molecules ; 26(15)2021 Jul 25.
Article in English | MEDLINE | ID: mdl-34361637

ABSTRACT

Ganoderma lucidum extract is a potent traditional remedy for curing various ailments. Drying is the most important postharvest step during the processing of Ganoderma lucidum. The drying process mainly involves heat (36 h at 60 °C) and freeze-drying (36 h at -80 °C). We investigated the effects of different postharvest drying protocols on the metabolites profiling of Ganoderma lucidum using GC-MS, followed by an investigation of the anti-neuroinflammatory potential in LPS-treated BV2 microglial cells. A total of 109 primary metabolites were detected from heat and freeze-dried samples. Primary metabolite profiling showed higher levels of amino acids (17.4%) and monosaccharides (8.8%) in the heat-dried extracts, whereas high levels of organic acids (64.1%) were present in the freeze-dried samples. The enzymatic activity, such as ATP-citrate synthase, pyruvate kinase, glyceraldehyde-3-phosphatase dehydrogenase, glutamine synthase, fructose-bisphosphate aldolase, and D-3-phosphoglycerate dehydrogenase, related to the reverse tricarboxylic acid cycle were significantly high in the heat-dried samples. We also observed a decreased phosphorylation level of the MAP kinase (Erk1/2, p38, and JNK) and NF-κB subunit p65 in the heat-dried samples of the BV2 microglia cells. The current study suggests that heat drying improves the production of ganoderic acids by the upregulation of TCA-related pathways, which, in turn, gives a significant reduction in the inflammatory response of LPS-induced BV2 cells. This may be attributed to the inhibition of NF-κB and MAP kinase signaling pathways in cells treated with heat-dried extracts.


Subject(s)
Anti-Inflammatory Agents , Antineoplastic Agents, Phytogenic , Neoplasms/drug therapy , Reishi/chemistry , Secondary Metabolism , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/pharmacology , Cell Line, Tumor , Desiccation , Mice , Neoplasm Proteins/metabolism , Neoplasms/metabolism , Neoplasms/pathology
16.
Immunity ; 34(3): 340-51, 2011 Mar 25.
Article in English | MEDLINE | ID: mdl-21419663

ABSTRACT

Excessive responses to pattern-recognition receptors are prevented by regulatory mechanisms that affect the amounts and activities of the downstream signaling proteins. We report that activation of the transcription factor IRF3 by the ribonucleic acid sensor RIG-I was restricted by caspase-8-mediated cleavage of the RIP1 protein, which resulted in conversion of RIP1 from a signaling enhancer to a signaling inhibitor. The proteins RIP1 and caspase-8 were recruited to the RIG-I complex after viral infection and served antagonistic regulatory roles. Conjugation of ubiquitin chains to RIP1 facilitated assembly of the RIG-I complex, resulting in enhanced phosphorylation of IRF3. However, the ubiquitination of RIP1 also rendered it susceptible to caspase-8-mediated cleavage that yielded an inhibitory RIP1 fragment. The dependence of RIP1 cleavage on the same molecular change as that facilitating RIG-I signaling allows for RIG-I signaling to be restricted in its duration without compromising its initial activation.


Subject(s)
Caspase 8/immunology , Gene Expression Regulation , Interferon Regulatory Factor-3/immunology , Nuclear Pore Complex Proteins/immunology , RNA Helicases/immunology , RNA-Binding Proteins/immunology , Receptors, Retinoic Acid/immunology , Animals , Caspase 8/genetics , Cell Line, Tumor , Gene Knockdown Techniques , HEK293 Cells , HeLa Cells , Humans , Immunoblotting , Mice , Microarray Analysis , RNA Helicases/metabolism , Repressor Proteins/immunology , Reverse Transcriptase Polymerase Chain Reaction
17.
J Nat Prod ; 83(9): 2737-2742, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32940037

ABSTRACT

Calvatia nipponica is an extremely rare mushroom with a limited number of studies on its chemical components and biological activities published. Here we report the isolation of a novel sterol, calvatianone (1), possessing a 6/5/6/5-fused ring system with a contracted tetrahydrofuran B-ring, and four known steroids (2-5) from the fruiting bodies of C. nipponica. The structure of calvatianone including its absolute configuration was determined by NMR spectroscopic analyses, HR-ESIMS, gauge-including atomic orbital NMR chemical shift calculations, and ECD calculations. Ergosterol peroxide (3) and cyathisterol (4) suppressed the cell viability increase induced by 17ß-estradiol in MCF-7 breast cancer cell lines, suggesting a possible approach for these compounds to serve as ERα antagonists.


Subject(s)
Agaricales/chemistry , Fruiting Bodies, Fungal/chemistry , Sterols/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Circular Dichroism , Estradiol , Estrogen Antagonists/pharmacology , Estrogen Receptor alpha/antagonists & inhibitors , Female , Humans , Magnetic Resonance Spectroscopy , Molecular Structure , Spectrometry, Mass, Electrospray Ionization , Steroids/chemistry
18.
Molecules ; 25(21)2020 Oct 27.
Article in English | MEDLINE | ID: mdl-33121016

ABSTRACT

Noni (Morinda citrifolia L.) fruit juice has been used in Polynesia as a traditional folk medicine and is very popular worldwide as a functional food supplement. In this study, compounds present in Hawaiian Noni fruit juice, with anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells were identified. Five compounds were isolated using a bioassay-driven technique and phytochemical analysis of noni fruit juice: asperulosidic acid (1), rutin (2), nonioside A (3), (2E,4E,7Z)-deca-2,4,7-trienoate-2-O-ß-d-glucopyranosyl-ß-d-glucopyranoside (4), and tricetin (5). The structures of these five compounds were determined via NMR spectroscopy and LC/MS. In an anti-inflammatory assay, compounds 1-5 inhibited the production of nitric oxide (NO), which is a proinflammatory mediator, in LPS-stimulated macrophages. Moreover, the mechanisms underlying the anti-inflammatory effects of compounds 1-5 were investigated. Parallel to the inhibition of NO production, treatment with compounds 1-5 downregulated the expression of IKKα/ß, I-κBα, and NF-κB p65 in LPS-stimulated macrophages. Furthermore, treatment with compounds 1-5 downregulated the expression of nitric oxide synthase and cyclooxygenase-2. Thus, these data demonstrated that compounds 1-5 present in noni fruit juice, exhibited potential anti-inflammatory activity; these active compounds may contribute preventively and therapeutically against inflammatory diseases.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Fruit and Vegetable Juices/analysis , Morinda/chemistry , Animals , Anti-Inflammatory Agents/isolation & purification , Cell Survival/drug effects , Cyclooxygenase 2/metabolism , Gene Expression Regulation/drug effects , I-kappa B Kinase/metabolism , I-kappa B Proteins/metabolism , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Mice , Nitric Oxide/biosynthesis , Nitric Oxide Synthase Type II/metabolism , RAW 264.7 Cells , Transcription Factor RelA/metabolism
19.
Biochim Biophys Acta Mol Cell Res ; 1865(9): 1230-1238, 2018 09.
Article in English | MEDLINE | ID: mdl-29908203

ABSTRACT

SIRT2, a member of the class III histone deacetylase family, has been identified as a tumor suppressor, which is associated with various cellular processes including metabolism and proliferation. However, the effects of SIRT2 on cancer cell migration caused by cytoskeletal rearrangement remain uncertain. Here we show that SIRT2 inhibits cell motility by suppressing actin polymerization. SIRT2 regulates actin dynamics through HSP90 destabilization and subsequent repression of LIM kinase (LIMK) 1/cofilin pathway. SIRT2 directly interacts with HSP90 and regulates its acetylation and ubiquitination. In addition, the deacetylase activity of SIRT2 is required for the regulation of actin polymerization and the ubiquitin-mediated proteasomal degradation of HSP90 induced by SIRT2.


Subject(s)
Actins/chemistry , HSP90 Heat-Shock Proteins/chemistry , HSP90 Heat-Shock Proteins/metabolism , Neoplasms/metabolism , Sirtuin 2/metabolism , Acetylation , Actin Depolymerizing Factors/metabolism , Cell Line, Tumor , Cell Movement , HCT116 Cells , HeLa Cells , Humans , Lim Kinases/metabolism , Neoplasms/genetics , Protein Multimerization , Proteolysis , Signal Transduction , Sirtuin 2/genetics , Ubiquitination
20.
Microb Pathog ; 135: 103625, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31325570

ABSTRACT

This study was design to evaluate the physiological properties of bacteriophage-insensitive Klebsiella pneumoniae (BIKP) mutants in association with the antibiotic cross-resistance, ß-lactamase activity, and gene expression. Klebsiella pneumoniae ATCC 23357(KPWT), ciprofloxacin-induced antibiotic-resistant K. pneumoniae ATCC 23357 (KPCIP), and clinically isolated antibiotic-resistant K. pneumoniae 10263 (KPCLI) were used to isolate BIKP mutants against KPB1, PBKP02, PBKP21, PBKP29, PBKP33, and PBKP35. PBKP35-induced mutants, including bacteriophage-insensitive K. pneumoniae ATCC 23357 (BIKPWT), ciprofloxacin-induced K. pneumoniae ATCC 23357 (BIKPCIP), and clinically isolated antibiotic-resistant K. pneumoniae CCARM 10263 (BIKPCLI). BIKPWT, BIKPCIP, and BIKPCLI were resistant to Klebsiella bacteriophages, KPB1, PBKP02, PBKP21, PBKP29, and PBKP33. The antibiotic cross-resistance to cefotaxime, cephalothin, chloramphenicol, ciprofloxacin, erythromycin, kanamycin, levofloxacin, and nalidixic acid was observed in BIKPWT. The relative expression levels of vagC was increased by more than 8-folds in BIKPWT, corresponding to the increased ß-lactamase activity. The aac(6')-Ib-cr was overexpressed in BIKP mutants, responsible for aminoglycoside and quinolone resistance. The phage-resistant mutants decreased the antibiotic susceptibilities in association with ß-lactamase activity and antibiotic resistance-related gene expression. The results pointed out the cross-resistance of BIKP mutants to antibiotics, which might be considered when applying for the therapeutic use of bacteriophage.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteriophages/physiology , Drug Resistance, Multiple, Bacterial/drug effects , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/virology , Aminoglycosides/genetics , Cefotaxime/pharmacology , Cephalothin/pharmacology , Chloramphenicol/pharmacology , Ciprofloxacin/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Gene Expression Regulation, Bacterial , Humans , Levofloxacin/pharmacology , Phage Therapy , Quinolones/pharmacology , beta-Lactamases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL