Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Annu Rev Med ; 75: 129-143, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-37729028

ABSTRACT

Major depressive disorder (MDD) is a leading cause of suicide in the world. Monoamine-based antidepressant drugs are a primary line of treatment for this mental disorder, although the delayed response and incomplete efficacy in some patients highlight the need for improved therapeutic approaches. Over the past two decades, ketamine has shown rapid onset with sustained (up to several days) antidepressant effects in patients whose MDD has not responded to conventional antidepressant drugs. Recent preclinical studies have started to elucidate the underlying mechanisms of ketamine's antidepressant properties. Herein, we describe and compare recent clinical and preclinical findings to provide a broad perspective of the relevant mechanisms for the antidepressant action of ketamine.


Subject(s)
Depressive Disorder, Major , Ketamine , Humans , Ketamine/therapeutic use , Depression/drug therapy , Depressive Disorder, Major/drug therapy , Antidepressive Agents/therapeutic use , Amines/therapeutic use
2.
Am J Emerg Med ; 76: 18-23, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37972504

ABSTRACT

OBJECTIVE: The vertical one-handed chest compression (OHCC) technique has demonstrated superior compression power and chest compression depth (CCD) compared to conventional OHCC. This study aimed to determine if a rescuer's handedness influences the CCD during the vertical OHCC. METHODS: This prospective randomized crossover simulation trial included 59 medical doctors. Each performed a 2-min single-rescuer cardiopulmonary resuscitation (CPR) on a pediatric manikin using the vertical OHCC, once with the dominant hand (Test 1) and once with the non-dominant hand (Test 2). CPR parameters were recorded in real-time via sensors in the manikin, and the compression force exerted by each hand was measured using a force plate. RESULTS: The mean and adequate CCD did not differ significantly between Test 1 and 2 (mean depth: 52 mm (interquartile range [IQR]: 49-57) in Test 1 vs. 52 mm (IQR: 49-57) in Test 2, P = 0.625; adequate depth: 97% (IQR: 37-100) in Test 1 vs. 92% (IQR: 51-99) in Test 2, P = 0.619). The mean compression force was significantly greater in the dominant hand compared to the non-dominant hand (23.1 kg ± 4.9 in dominant hand vs. 21.7 kg ± 4.1 in non-dominant hand, P < 0.001). Other parameters showed no significant differences between Tests 1 and 2. CONCLUSIONS: While vertical OHCC with a dominant hand generated greater force, the rescuer's handedness did not affect the CCD during the vertical OHCC.


Subject(s)
Cardiopulmonary Resuscitation , Humans , Child , Cardiopulmonary Resuscitation/methods , Functional Laterality , Prospective Studies , Hand , Pressure , Manikins , Cross-Over Studies
3.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Article in English | MEDLINE | ID: mdl-33975959

ABSTRACT

Ketamine is a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist that produces rapid antidepressant action in some patients with treatment-resistant depression. However, recent data suggest that ∼50% of patients with treatment-resistant depression do not respond to ketamine. The factors that contribute to the nonresponsiveness to ketamine's antidepressant action remain unclear. Recent studies have reported a role for secreted glycoprotein Reelin in regulating pre- and postsynaptic function, which suggests that Reelin may be involved in ketamine's antidepressant action, although the premise has not been tested. Here, we investigated whether the disruption of Reelin-mediated synaptic signaling alters ketamine-triggered synaptic plasticity and behavioral effects. To this end, we used mouse models with genetic deletion of Reelin or apolipoprotein E receptor 2 (Apoer2), as well as pharmacological inhibition of their downstream effectors, Src family kinases (SFKs) or phosphoinositide 3-kinase. We found that disruption of Reelin, Apoer2, or SFKs blocks ketamine-driven behavioral changes and synaptic plasticity in the hippocampal CA1 region. Although ketamine administration did not affect tyrosine phosphorylation of DAB1, an adaptor protein linked to downstream signaling of Reelin, disruption of Apoer2 or SFKs impaired baseline NMDA receptor-mediated neurotransmission. These results suggest that maintenance of baseline NMDA receptor function by Reelin signaling may be a key permissive factor required for ketamine's antidepressant effects. Taken together, our results suggest that impairments in Reelin-Apoer2-SFK pathway components may in part underlie nonresponsiveness to ketamine's antidepressant action.


Subject(s)
Antidepressive Agents/pharmacology , Behavior, Animal/drug effects , Ketamine/pharmacology , Neuronal Plasticity/drug effects , Reelin Protein/physiology , Animals , LDL-Receptor Related Proteins/physiology , Male , Mice , Neuronal Plasticity/physiology , Phosphatidylinositol 3-Kinases/physiology , Receptors, N-Methyl-D-Aspartate/physiology , Signal Transduction/drug effects , src-Family Kinases/antagonists & inhibitors , src-Family Kinases/physiology
4.
Clin Immunol ; 246: 109215, 2023 01.
Article in English | MEDLINE | ID: mdl-36581222

ABSTRACT

Although the use of IVIg has increased in various immune-driven diseases and even in pregnancy, the exact action mechanisms of IVIg are not fully understood. Dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN) is a known receptor for α-2,6-sialylated IgG (sIVIg), which is responsible for the anti-inflammatory effect of IVIg. DC-SIGN is expressed on Hofbauer cells (HBCs) of the fetal villi of the placenta which act as an innate immune modulator at the maternal-fetal interface. Preeclampsia is a major complication in pregnancy and is related to IL-10, a cytokine with an important role in immune tolerance. DC-SIGN interaction with sIVIg in HBCs promoted IL-10 secretion through the activation of the caveolin-1/NF-κB pathway, especially in plasma lipid rafts. Consistent results were obtained for HBCs from patients with preeclampsia. Collectively, the stimulation of DC-SIGN+ HBCs with sIVIg enhanced immune tolerance in the feto-maternal environment, suggesting the therapeutic application of sIVIg to prevent preeclampsia.


Subject(s)
Immunoglobulins, Intravenous , Pre-Eclampsia , Pregnancy , Female , Humans , Immunoglobulins, Intravenous/therapeutic use , NF-kappa B/metabolism , Interleukin-10/metabolism , Caveolin 1/metabolism , Lectins, C-Type/metabolism , Immune Tolerance , Dendritic Cells
5.
J Toxicol Environ Health A ; 85(1): 1-13, 2022 01 02.
Article in English | MEDLINE | ID: mdl-34445937

ABSTRACT

Prenatal exposure to valproic acid (VPA) has been implicated in the manifestation of autism spectrum disorder (ASD)-like behavioral and functional changes both in human and rodents including mice and rats. The objective of this study was to determine metabolomics profiling and biomarkers related to VPA-induced symptoms resembling ASD using proton nuclear magnetic resonance (1H-NMR) spectral data. VPA was administered to pregnant rats at gestation day 12.5 and effects measured subsequently in male 4-week-old offspring pups. The sociability of VPA-treated animals was significantly diminished and exhibited ASD-like behavior as evidenced by reduction of social adaptation disorder and lack of social interactions. To find biomarkers related to ASD, the following were collected prefrontal brain cortices, urine bladder and blood samples directly from heart puncture. In all samples, principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) displayed significant clustering pattern differences between control and treated groups. Valine, taurine, myo-inositol, 3-hydroxybutyrate and 1,3-dihydroxyacetone were significantly decreased in brain cortices in treated rats. Serum metabolites of glucose, creatine phosphate, lactate, glutamine and threonine were significantly increased in VPA-administered animals. Urinary metabolites of pimelate, 3-hydroxyisovalerate and valerate were significantly reduced in VPA-treated rat, whereas galactose and galactonate levels were elevated. Various metabolites were associated with mitochondrial dysfunction metabolism and central nervous system disorders. Data demonstrated that VPA-induced alterations in endogenous metabolites of serum, urine, and brain cortex which might prove useful as biomarkers for symptoms resembling ASD as a model of this disorder.


Subject(s)
Autism Spectrum Disorder/metabolism , Disease Models, Animal , Valproic Acid/toxicity , Animals , Autism Spectrum Disorder/etiology , Biomarkers/metabolism , Brain/metabolism , Female , Male , Maternal Exposure/adverse effects , Metabolomics , Proton Magnetic Resonance Spectroscopy , Rats
6.
Int J Vitam Nutr Res ; 91(5-6): 649-658, 2021 Sep.
Article in English | MEDLINE | ID: mdl-32149579

ABSTRACT

Background/Aims: Trials on the effects of cholecalciferol supplementation in type 2 diabetes with chronic kidney disease patients were underexplored. Therefore, the aim of this study was to investigate the effects of two different doses of vitamin D supplementation on serum 25-hydroxyvitamin D [25(OH)D] concentrations and metabolic parameters in vitamin D-deficient Korean diabetes patients with chronic kidney disease. Methods: 92 patients completed this study: the placebo group (A, n = 33), the oral cholecalciferol 1,000 IU/day group (B, n = 34), or the single 200,000 IU injection group (C, n = 25, equivalent to 2,000 IU/day). 52% of the patients had less than 60 mL/min/1.73m2 of glomerular filtration rates. Laboratory test and pulse wave velocity were performed before and after supplementation. Results: After 12 weeks, serum 25(OH)D concentrations of the patients who received vitamin D supplementation were significantly increased (A, -2.4 ± 1.2 ng/mL vs. B, 10.7 ± 1.2 ng/mL vs. C, 14.6 ± 1.7 ng/mL; p < 0.001). In addition, the lipid profiles in the vitamin D injection group (C) showed a significant decrease in triglyceride and a rise in HDL cholesterol. However, the other parameters showed no differences. Conclusions: Our data indicated that two different doses and routes of vitamin D administration significantly and safely increased serum 25(OH)D concentrations in vitamin D-deficient diabetes patients with comorbid chronic kidney disease. In the group that received the higher vitamin D dose, the lipid profiles showed significant improvement, but there were no beneficial effects on other metabolic parameters.


Subject(s)
Diabetes Mellitus, Type 2 , Renal Insufficiency, Chronic , Vitamin D Deficiency , Cholecalciferol , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Dietary Supplements , Humans , Pulse Wave Analysis , Renal Insufficiency, Chronic/complications , Vitamin D , Vitamin D Deficiency/complications , Vitamin D Deficiency/drug therapy
7.
Neurochem Res ; 40(11): 2211-9, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26349765

ABSTRACT

The post translational modification of lysine acetylation is a key mechanism that regulates chromatin structure. Epigenetic readers, such as the BET domains, are responsible for reading histone lysine acetylation which is a hallmark of open chromatin structure, further providing a scaffold that can be accessed by RNA polymerases as well as transcription factors. Recently, several reports have assessed and highlighted the roles of epigenetic readers in various cellular contexts. However, little is known about their role in the regulation of inflammatory genes, which is critical in exquisitely tuning inflammatory responses to a variety of immune stimuli. In this study, we investigated the role of epigenetic readers BRD2 and BRD4 in the lipopolysaccharide (LPS)-induced immune responses in mouse primary astrocytes. Inflammatory stimulation by LPS showed that the levels of Brd2 mRNA and protein were increased, while Brd4 mRNA levels did not change. Knocking down of Brd2 mRNA using specific small interfering RNA (siRNA) in cultured mouse primary astrocytes inhibited LPS-induced mRNA expression and secretion of plasminogen activator inhibitor-1 (PAI-1). However, no other pro-inflammatory cytokines, such as Il-6, Il-1ß and Tnf-α, were affected. Indeed, treatment with bromodomain-containing protein inhibitor, JQ1, blocked Pai-1 mRNA expression through the inhibition of direct BRD2 protein-binding and active histone modification on Pai-1 promoter. Taken together, our data suggest that BRD2 is involved in the modulation of neuroinflammatory responses through PAI-1 and via the regulation of epigenetic reader BET protein, further providing a potential novel therapeutic strategy in neuroinflammatory diseases.


Subject(s)
Astrocytes/metabolism , Chromosomal Proteins, Non-Histone/genetics , Epigenesis, Genetic/genetics , Lipopolysaccharides/pharmacology , Serpin E2/biosynthesis , Serpin E2/genetics , Animals , Astrocytes/drug effects , Azepines/pharmacology , Cytokines/biosynthesis , Cytokines/genetics , Gene Knockdown Techniques , Histones/metabolism , Inflammation/chemically induced , Inflammation/genetics , Inflammation/metabolism , Mice , Nuclear Proteins/biosynthesis , Nuclear Proteins/genetics , Primary Cell Culture , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , RNA, Small Interfering , Serpin E2/antagonists & inhibitors , Transcription Factors/biosynthesis , Transcription Factors/genetics , Transfection , Triazoles/pharmacology
8.
Cell Mol Neurobiol ; 34(2): 297-305, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24338128

ABSTRACT

Fragile X mental retardation protein (FMRP) is encoded by Fmr1 gene in which mutation is known to cause fragile X syndrome characterized by mental impairment and other psychiatric symptoms similar to autism spectrum disorders. FMRP plays important roles in cellular mRNA biology such as transport, stability, and translation as an RNA-binding protein. In the present study, we identified potential role of FMRP in the neural differentiation, using cortical neural progenitor cells from Sprague-Dawley rat. We newly found NeuroD1, an essential regulator of glutamatergic neuronal differentiation, as a new mRNA target interacting with FMRP in co-immunoprecipitation experiments. We also identified FMRP as a regulator of neuronal differentiation by modulating NeuroD1 expression. Down-regulation of FMRP by siRNA also increased NeuroD1 expression along with increased pre- and post-synaptic development of glutamatergic neuron, as evidenced by Western blot and immunocytochemistry. On the contrary, cells harboring FMRP over-expression construct showed decreased NeuroD1 expression. Treatment of cultured neural precursor cells with a histone deacetylase inhibitor, valproic acid known as an inducer of hyper-glutamatergic neuronal differentiation, down-regulated the expression of FMRP, and induced NeuroD1 expression. Our study suggests that modulation of FMRP expression regulates neuronal differentiation by interaction with its binding target mRNA, and provides an example of the gene and environmental interaction regulating glutamatergic neuronal differentiation.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Differentiation , Fragile X Mental Retardation Protein/metabolism , Gene Expression Regulation , Nerve Tissue Proteins/genetics , Neural Stem Cells/cytology , Neurons/cytology , Protein Biosynthesis , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cells, Cultured , Female , Gene Expression Regulation/drug effects , Gene Knockdown Techniques , Glutamates/metabolism , Nerve Tissue Proteins/metabolism , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Neurons/drug effects , Neurons/metabolism , Protein Binding/drug effects , Protein Biosynthesis/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Synapses/drug effects , Synapses/metabolism , Valproic Acid/pharmacology
9.
Article in English | MEDLINE | ID: mdl-38956176

ABSTRACT

Prevailing hypotheses on the mechanisms of antidepressant action posit that antidepressants directly counteract deficiencies in major neurotransmitter signaling systems that underlie depression. The rapidly acting antidepressant ketamine has been postulated to correct excess glutamatergic signaling via glutamatergic antagonism leading to the rescue of neuronal structural deficits and reversal of behavioral symptoms. We studied this premise using systemic administration of the acetylcholinesterase inhibitor physostigmine, which has been shown to rapidly elicit a shorter-term period of depressed mood in humans via cholinergic mechanisms. We observed that physostigmine induces acute stress in tandem with long term depression of glutamate release in the hippocampus of mice. However, ketamine rapidly acts to re-establish glutamatergic synaptic efficacy via postsynaptic signaling and behaviorally masks the reduction in passive coping induced by physostigmine. These results underscore the divergence of synaptic signaling mechanisms underlying mood changes and antidepressant action and highlight how distinct synaptic mechanisms may underlie neuropsychiatric disorders versus their treatment.

10.
Mol Neurobiol ; 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38457106

ABSTRACT

Depression is a debilitating mood disorder that causes persistent feelings of sadness, emptiness, and a loss of joy. However, the clinical efficacy of representative drugs for depression, such as selective serotonin reuptake inhibitors, remains controversial. Therefore, there is an urgent need for more effective therapies to treat depression. Neuroinflammation and the hypothalamic-pituitary-adrenal (HPA) axis are pivotal factors in depression. Inulae Flos (IF), the flower of Inula japonica Thunb, is known for its antioxidant and anti-inflammatory effects. This study explored whether IF alleviates depression in both in vitro and in vivo models. For in vitro studies, we treated BV2 and PC12 cells damaged by lipopolysaccharides or corticosterone (CORT) with IF to investigate the mechanisms of depression. For in vivo studies, C57BL/6 mice were exposed to chronic restraint stress and were administered IF at doses of 0, 100, and 300 mg/kg for 2 weeks. IF inhibited pro-inflammatory mediators, such as nitric oxide, inducible nitric oxide synthase, and interleukins in BV2 cells. Moreover, IF increased the viability of CORT-damaged PC12 cells by modulating protein kinase B, a mammalian target of the rapamycin pathway. Behavioral assessments demonstrated that IF reduced depression-like behaviors in mice. We found that IF reduced the activation of microglia and astrocytes, and regulated synapse plasticity in the mice brains. Furthermore, IF lowered elevated CORT levels in the plasma and restored glucocorticoid receptor expression in the hypothalamus. Collectively, these findings suggest that IF can alleviate depression by mitigating neuroinflammation and recovering dysfunction of the HPA-axis.

11.
Article in English | MEDLINE | ID: mdl-38467326

ABSTRACT

Post-traumatic stress disorder (PTSD) is a mental illness that can occur in individuals who have experienced trauma. Current treatments for PTSD, typically serotonin reuptake inhibitors, have limited effectiveness for patients and often cause serious adverse effects. Therefore, a novel class of treatment with better pharmacological profile is necessary. D-Pinitol has been reported to be effective for depression and anxiety disorders, but there are no reports associated with PTSD. In the present study, we investigated the effects of D-pinitol in a mouse model of PTSD induced by a single prolonged stress (SPS) protocol. We examined the therapeutic effects of D-pinitol on emotional and cognitive impairments in the SPS mouse model. We also investigated the effects of D-pinitol on fear memory formation. Mineralocorticoid receptor transactivation assay, Western blot, and quantitative PCR were employed to investigate how D-pinitol exerts its pharmacological activities. D-Pinitol ameliorated PTSD-like behaviors in a SPS mouse model. D-Pinitol also normalized the increased mRNA expression levels and protein levels of the mineralocorticoid receptor in the amygdala. A mineralocorticoid receptor agonist reversed the effects of D-pinitol on fear extinction and recall, and the antagonistic property of D-pinitol against the mineralocorticoid receptor was confirmed in vitro. Our findings suggest that D-pinitol could serve as a potential therapeutic agent for PTSD due to its antagonistic effect on the mineralocorticoid receptor.


Subject(s)
Inositol/analogs & derivatives , Stress Disorders, Post-Traumatic , Mice , Humans , Animals , Stress Disorders, Post-Traumatic/drug therapy , Stress Disorders, Post-Traumatic/psychology , Fear/physiology , Extinction, Psychological , Receptors, Mineralocorticoid/metabolism , Receptors, Mineralocorticoid/therapeutic use , Disease Models, Animal , Stress, Psychological/psychology
12.
Neurochem Res ; 38(9): 1960-72, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23824559

ABSTRACT

Cytoplasmic polyadenylation binding protein 1 (CPEB1) is a RNA binding protein, which regulates translation of target mRNAs by regulating polyadenylation status. CPEB1 plays important roles in the regulation of germline cell development by modulating cell cycle progression through the polyadenylation of target mRNAs such as cyclin B1. Similar mechanism is reported in proliferating astrocytes by us, although CPEB1 is involved in the transport of target mRNAs as well as local translation at dendritic spines. In this study, we found the expression of CPEB1 in cultured rat primary neural progenitor cells (NPCs). EGF stimulation of cultured NPCs induced rapid phosphorylation of CPEB1, a hallmark of CPEB1-dependent translational control along with cyclin B1 polyadenylation and translation. EGF-induced activation of ERK1/2 and Aurora A kinase was responsible for CPEB1 phosphorylation. Pharmacological inhibition studies suggested that ERK1/2 is involved in the activation of Aurora A kinase and regulation of CPEB1 phosphorylation in cultured NPCs. Long-term incubation in EGF resulted in the down-regulation of CPEB1 expression, which further increased expression of cyclin B1 and cell cycle progression. When we down-regulated the expression of CPEB1 in NPCs by siRNA transfection, the proliferation of NPCs was increased. Increased NPCs proliferation by down-regulation of CPEB1 resulted in eventual up-regulation of neuronal differentiation with increase in both pre- and post-synaptic proteins. The results from the present study may suggest the importance of translational control in the regulation of neuronal development, an emerging concept in many neurodevelopmental and psychiatric disorders such as autism spectrum disorder.


Subject(s)
Cell Proliferation , Neural Stem Cells/cytology , Neurons/cytology , RNA-Binding Proteins/physiology , Animals , Base Sequence , Cells, Cultured , DNA Primers , Female , Pregnancy , RNA-Binding Proteins/genetics , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction
13.
Trends Mol Med ; 29(5): 364-375, 2023 05.
Article in English | MEDLINE | ID: mdl-36907686

ABSTRACT

Acute administration of (R,S)-ketamine (ketamine) produces rapid antidepressant effects that in some patients can be sustained for several days to more than a week. Ketamine blocks N-methyl-d-asparate (NMDA) receptors (NMDARs) to elicit specific downstream signaling that induces a novel form of synaptic plasticity in the hippocampus that has been linked to the rapid antidepressant action. These signaling events lead to subsequent downstream transcriptional changes that are involved in the sustained antidepressant effects. Here we review how ketamine triggers this intracellular signaling pathway to mediate synaptic plasticity which underlies the rapid antidepressant effects and links it to downstream signaling and the sustained antidepressant effects.


Subject(s)
Ketamine , Humans , Ketamine/pharmacology , Ketamine/therapeutic use , Ketamine/metabolism , Depression/drug therapy , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Antidepressive Agents/metabolism , Hippocampus , Signal Transduction
14.
Biomed Eng Lett ; 13(1): 11-19, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36249572

ABSTRACT

Telemedicine data are measured directly by untrained patients, which may cause problems in data reliability. Many deep learning-based studies have been conducted to improve the quality of measurement data. However, they could not provide an accurate basis for judgment. Therefore, this study proposed a deep neural network filter-based reliability evaluation system that could present an accurate basis for judgment and verified its reliability by evaluating photoplethysmography signal and change in data quality according to judgment criteria through clinical trials. In the results, the deviation of 3% or more when the oxygen saturation was judged as normal according to each criterion was 0.3% and 0.82% for criteria 1 and 2, respectively, which was very low compared to the abnormal judgment (3.86%). The deviation of diastolic blood pressure (≥ 10 mmHg) according to criterion 3 was reduced by about 4% in the normal judgment compared to the abnormal. In addition, when multiple judgment conditions were satisfied, abnormal data were better discriminated than when only one criterion was satisfied. Therefore, the basis for judging abnormal data can be presented with the system proposed in this study, and the quality of telemedicine data can be improved according to the judgment result.

15.
Phytomedicine ; 118: 154930, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37348246

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by the accumulation of amyloid-ß (Aß) and excessive neuroinflammation, resulting in neuronal cell death and cognitive impairments. Eugenol, a phenylpropene, is the main component of Syzygium aromaticum L. (Myrtaceae) and has multiple therapeutic effects, including neuroprotective and anti-inflammatory effects, through multimodal mechanisms. PURPOSE: We aimed to investigate the effect of eugenol on AD pathologies using a 5× familiar AD (5×FAD) mouse model. METHODS: Eight-month-old 5×FAD and wild-type mice were administered with eugenol (10 or 30 mg/kg/day, p.o) for 2 months. Y-maze and Morris water maze tests were performed to assess the cognitive function of mice. After the behavioral test, molecular analysis was conducted to investigate the therapeutic mechanism of eugenol. RESULTS: Our findings indicate that eugenol treatment effectively mitigated cognitive impairments in 5×FAD mice. This beneficial effect was associated with a decrease in AD pathologies, including neuronal cell loss and Aß deposition. Specifically, eugenol inhibited necroptosis activation and increased microglial phagocytosis, which were the underlying mechanisms for the observed reductions in neuronal cell loss and Aß deposition, respectively. CONCLUSION: Overall, our data suggest that eugenol would be a potential therapeutic candidate for AD.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Mice , Animals , Alzheimer Disease/metabolism , Eugenol/pharmacology , Eugenol/therapeutic use , Mice, Transgenic , Amyloid beta-Peptides/metabolism , Disease Models, Animal
16.
Sci Transl Med ; 15(711): eabh3489, 2023 08 30.
Article in English | MEDLINE | ID: mdl-37647389

ABSTRACT

Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is a master regulator of mitochondrial biogenesis. Reduced PGC-1α abundance is linked to skeletal muscle weakness in aging or pathological conditions, such as neurodegenerative diseases and diabetes; thus, elevating PGC-1α abundance might be a promising strategy to treat muscle aging. Here, we performed high-throughput screening and identified a natural compound, farnesol, as a potent inducer of PGC-1α. Farnesol administration enhanced oxidative muscle capacity and muscle strength, leading to metabolic rejuvenation in aged mice. Moreover, farnesol treatment accelerated the recovery of muscle injury associated with enhanced muscle stem cell function. The protein expression of Parkin-interacting substrate (PARIS/Zfp746), a transcriptional repressor of PGC-1α, was elevated in aged muscles, likely contributing to PGC-1α reduction. The beneficial effect of farnesol on aged muscle was mediated through enhanced PARIS farnesylation, thereby relieving PARIS-mediated PGC-1α suppression. Furthermore, short-term exercise increased PARIS farnesylation in the muscles of young and aged mice, whereas long-term exercise decreased PARIS expression in the muscles of aged mice, leading to the elevation of PGC-1α. Collectively, the current study demonstrated that the PARIS-PGC-1α pathway is linked to muscle aging and that farnesol treatment can restore muscle functionality in aged mice through increased farnesylation of PARIS.


Subject(s)
Farnesol , Muscle Weakness , Animals , Mice , Farnesol/pharmacology , Aging , Prenylation , Ubiquitin-Protein Ligases
17.
Article in English | MEDLINE | ID: mdl-35933111

ABSTRACT

Rhabdomyosarcoma (RMS) is a childhood sarcoma composed of myoblast-like cells, which suggests a defect in terminal skeletal muscle differentiation. To explore potential defects in the differentiation program, we searched for mRNA splicing variants in genes encoding transcription factors driving skeletal muscle lineage commitment and differentiation. We studied two RMS cases and identified altered splicing resulting in "skipping" the second of three exons in MYOD1. RNA-Seq data from 42 tumors and additional RMS cell lines revealed exon 2 skipping in both MYOD1 and MYF5 but not in MYF6 or MYOG. Complementary molecular analysis of MYOD1 mRNA found evidence for exon skipping in 5 additional RMS cases. Functional studies showed that so-called MYODΔEx2 protein failed to robustly induce muscle-specific genes, and its ectopic expression conferred a selective advantage in cultured fibroblasts and an RMS xenograft. In summary, we present previously unrecognized exon skipping within MYOD1 and MYF5 in RMS, and we propose that alternative splicing can represent a mechanism to alter the function of these two transcription factors in RMS.

18.
Cell Rep ; 37(5): 109918, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34731624

ABSTRACT

Ketamine is a noncompetitive glutamatergic N-methyl-d-aspartate receptor (NMDAR) antagonist that exerts rapid antidepressant effects. Preclinical studies identify eukaryotic elongation factor 2 kinase (eEF2K) signaling as essential for the rapid antidepressant action of ketamine. Here, we combine genetic, electrophysiological, and pharmacological strategies to investigate the role of eEF2K in synaptic function and find that acute, but not chronic, inhibition of eEF2K activity induces rapid synaptic scaling in the hippocampus. Retinoic acid (RA) signaling also elicits a similar form of rapid synaptic scaling in the hippocampus, which we observe is independent of eEF2K functioni. The RA signaling pathway is not required for ketamine-mediated antidepressant action; however, direct activation of the retinoic acid receptor α (RARα) evokes rapid antidepressant action resembling ketamine. Our findings show that ketamine and RARα activation independently elicit a similar form of multiplicative synaptic scaling that is causal for rapid antidepressant action.


Subject(s)
Antidepressive Agents/pharmacology , CA1 Region, Hippocampal/drug effects , Ketamine/pharmacology , Neuronal Plasticity/drug effects , Neurons/drug effects , Synapses/drug effects , Synaptic Transmission/drug effects , Tretinoin/pharmacology , Animals , CA1 Region, Hippocampal/metabolism , Elongation Factor 2 Kinase/genetics , Elongation Factor 2 Kinase/metabolism , HEK293 Cells , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism , Retinoic Acid Receptor alpha/agonists , Retinoic Acid Receptor alpha/genetics , Retinoic Acid Receptor alpha/metabolism , Synapses/metabolism , Time Factors
19.
Nat Neurosci ; 24(8): 1100-1109, 2021 08.
Article in English | MEDLINE | ID: mdl-34183865

ABSTRACT

The rapidly acting antidepressants ketamine and scopolamine exert behavioral effects that can last from several days to more than a week in some patients. The molecular mechanisms underlying the maintenance of these antidepressant effects are unknown. Here we show that methyl-CpG-binding protein 2 (MeCP2) phosphorylation at Ser421 (pMeCP2) is essential for the sustained, but not the rapid, antidepressant effects of ketamine and scopolamine in mice. Our results reveal that pMeCP2 is downstream of BDNF, a critical factor in ketamine and scopolamine antidepressant action. In addition, we show that pMeCP2 is required for the long-term regulation of synaptic strength after ketamine or scopolamine administration. These results demonstrate that pMeCP2 and associated synaptic plasticity are essential determinants of sustained antidepressant effects.


Subject(s)
Antidepressive Agents/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Brain/drug effects , Methyl-CpG-Binding Protein 2/metabolism , Neuronal Plasticity/drug effects , Animals , Brain/metabolism , Ketamine/pharmacology , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuronal Plasticity/physiology , Phosphorylation , Scopolamine/pharmacology
20.
Behav Brain Res ; 380: 112378, 2020 02 17.
Article in English | MEDLINE | ID: mdl-31760154

ABSTRACT

Clinical findings show that a single subanesthetic dose of ketamine elicits rapid antidepressant effects. Accumulating data suggests that ketamine blocks the N-methyl-D-aspartate receptor and results in specific effects on intracellular signaling including increased brain-derived neurotrophic factor (BDNF) protein expression, which augments synaptic responses required for rapid antidepressant effects. To further investigate this potential mechanism for ketamine's antidepressant action, we examined the effect of increasing ketamine doses on intracellular signaling, synaptic plasticity, and rapid antidepressant effects. Given that ketamine is often used at 2.5-10 mg/kg to examine antidepressant effects and 20-50 mg/kg to model schizophrenia, we compared effects at 5, 20 and 50 mg/kg. We found that intraperitoneal (i.p.) injection of low dose (5 mg/kg) ketamine produces rapid antidepressant effects, which were not observed at 20 or 50 mg/kg. At 5 mg/kg ketamine significantly increased the level of BDNF, a protein necessary for the rapid antidepressant effects, while 20 and 50 mg/kg ketamine did not alter BDNF levels in the hippocampus. Low concentration ketamine also evoked the highest synaptic potentiation in the hippocampal CA1, while higher concentrations significantly decreased the synaptic effects. Our results suggest low dose ketamine produces antidepressant effects and has independent behavioral and synaptic effects compared to higher doses of ketamine that are used to model schizophrenia. These findings strengthen our knowledge on specific signaling associated with ketamine's rapid antidepressant effects.


Subject(s)
Antidepressive Agents/pharmacology , Behavior, Animal/drug effects , Brain-Derived Neurotrophic Factor/drug effects , Hippocampus/drug effects , Ketamine/pharmacology , Neuronal Plasticity/drug effects , Signal Transduction/drug effects , Animals , Antidepressive Agents/administration & dosage , Brain-Derived Neurotrophic Factor/metabolism , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/metabolism , Disease Models, Animal , Hippocampus/metabolism , Ketamine/administration & dosage , Male , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL