Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Nucleic Acids Res ; 51(20): 11178-11196, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37850636

ABSTRACT

Von Hippel-Lindau (VHL) is a tumor suppressor that functions as the substrate recognition subunit of the CRL2VHL E3 complex. While substrates of VHL have been identified, its tumor suppressive role remains to be fully understood. For further determination of VHL substrates, we analyzed the physical interactome of VHL and identified the histone H3K9 methyltransferase SETBD1 as a novel target. SETDB1 undergoes oxygen-dependent hydroxylation by prolyl hydroxylase domain proteins and the CRL2VHL complex recognizes hydroxylated SETDB1 for ubiquitin-mediated degradation. Under hypoxic conditions, SETDB1 accumulates by escaping CRL2VHL activity. Loss of SETDB1 in hypoxia compared with that in normoxia escalates the production of transposable element-derived double-stranded RNAs, thereby hyperactivating the immune-inflammatory response. In addition, strong derepression of TEs in hypoxic cells lacking SETDB1 triggers DNA damage-induced death. Our collective results support a molecular mechanism of oxygen-dependent SETDB1 degradation by the CRL2VHL E3 complex and reveal a role of SETDB1 in genome stability under hypoxia.


Subject(s)
Genomic Instability , Histone-Lysine N-Methyltransferase , Hypoxia , Humans , Genes, Tumor Suppressor , Histone-Lysine N-Methyltransferase/metabolism , Hypoxia/genetics , Hypoxia/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Oxygen/metabolism , Ubiquitin-Protein Ligases/genetics , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Von Hippel-Lindau Tumor Suppressor Protein/metabolism
2.
Mol Psychiatry ; 27(3): 1805-1815, 2022 03.
Article in English | MEDLINE | ID: mdl-35165396

ABSTRACT

Sensorimotor information processing underlies normal cognitive and behavioral traits and has classically been evaluated through prepulse inhibition (PPI) of a startle reflex. PPI is a behavioral dimension deregulated in several neurological and psychiatric disorders, yet the mechanisms underlying the cross-diagnostic nature of PPI deficits across these conditions remain to be understood. To identify circuitry mechanisms for PPI, we performed circuitry recording over the prefrontal cortex and striatum, two brain regions previously implicated in PPI, using wild-type (WT) mice compared to Disc1-locus-impairment (LI) mice, a model representing neuropsychiatric conditions. We demonstrated that the corticostriatal projection regulates neurophysiological responses during the PPI testing in WT, whereas these circuitry responses were disrupted in Disc1-LI mice. Because our biochemical analyses revealed attenuated brain-derived neurotrophic factor (Bdnf) transport along the corticostriatal circuit in Disc1-LI mice, we investigated the potential role of Bdnf in this circuitry for regulation of PPI. Virus-mediated delivery of Bdnf into the striatum rescued PPI deficits in Disc1-LI mice. Pharmacologically augmenting Bdnf transport by chronic lithium administration, partly via phosphorylation of Huntingtin (Htt) serine-421 and its integration into the motor machinery, restored striatal Bdnf levels and rescued PPI deficits in Disc1-LI mice. Furthermore, reducing the cortical Bdnf expression negated this rescuing effect of lithium, confirming the key role of Bdnf in lithium-mediated PPI rescuing. Collectively, the data suggest that striatal Bdnf supply, collaboratively regulated by Htt and Disc1 along the corticostriatal circuit, is involved in sensorimotor gating, highlighting the utility of dimensional approach in investigating pathophysiological mechanisms across neuropsychiatric disorders.


Subject(s)
Brain-Derived Neurotrophic Factor , Corpus Striatum , Nerve Tissue Proteins , Prefrontal Cortex , Prepulse Inhibition , Animals , Brain-Derived Neurotrophic Factor/metabolism , Corpus Striatum/metabolism , Humans , Mice , Nerve Tissue Proteins/metabolism , Prefrontal Cortex/metabolism , Prepulse Inhibition/physiology , Reflex, Startle/physiology , Sensory Gating/physiology
3.
BMC Oral Health ; 23(1): 289, 2023 05 13.
Article in English | MEDLINE | ID: mdl-37179291

ABSTRACT

BACKGROUND: This study aimed to evaluate periapical radiolucency of endodontically treated teeth before and after orthodontic treatment using cone-beam computed tomography (CBCT). METHODS: Patients who underwent orthodontic treatment at Wonkwang University Daejeon Dental Hospital between January 2009 and June 2022 were included based on the following criteria: root canal treatment, and availability of CBCT images taken before and after orthodontic treatment with an interval of > 1 year between both scans. Patients with primary teeth or orthodontic tooth extractions were excluded. The size of the periapical radiolucency (SPR) of the endodontically treated tooth was evaluated using CBCT. Pre-orthodontic treatment CBCT images and the latest post-orthodontic treatment CBCT images were analyzed. The selected teeth were further categorized based on the orthodontic duration, CBCT interval, the patient sex and age, the tooth type and position (maxilla or mandible), and quality of root canal obturation. Statistical analyses were performed to evaluate changes in SPR using the paired t-test and multiple regression analysis. RESULTS: In total, 115 teeth (37 anterior teeth, 22 premolars and 56 molars) from 61 patients (age, 14-54 years) were included, with 39 teeth from male patients and 76 teeth from female patients. The age was ranged between 14 and 54 years old, and mean age was 25.87 years old. The mean CBCT interval and orthodontic treatment period were 43.32 months and 36.84 months, respectively. Seventy-five teeth showed good obturation quality, 80 were not used as anchors during orthodontic treatment, and 71 were maxillary. The SPR size increased after orthodontic treatment for 56 teeth and decreased for 59 cases. The average change in SPR was -0.102 mm and the difference was not significant. Significant decrease of SPR were observed between female patients (p = 0.036) and maxillary teeth (p = 0.040). CONCLUSION: Orthodontic treatment had no significant impact on the changes in the SPR in endodontically treated teeth in most categories. However, there was a significant difference among females and the maxillary teeth. In both categories, the size of radiolucency decreased significantly.


Subject(s)
Spiral Cone-Beam Computed Tomography , Tooth, Nonvital , Humans , Male , Female , Adult , Adolescent , Young Adult , Middle Aged , Tooth, Nonvital/diagnostic imaging , Tooth, Nonvital/therapy , Root Canal Therapy/methods , Root Canal Obturation , Bicuspid , Cone-Beam Computed Tomography/methods , Dental Pulp Cavity
4.
Curr Issues Mol Biol ; 44(5): 1928-1940, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35678660

ABSTRACT

The proliferation and migration of vascular smooth muscle cells (VSMCs) are important factors in the occurrence of cardiovascular diseases, such as blood flow abnormalities, stroke and atherosclerosis. Evening primrose, known as Oenothera biennis, is a plant native to Korea that exerts physiological activities, such as antioxidant effects, the inhibition of lipid accumulation and the prevention of muscle atrophy. However, the function of evening primrose stem (EVP) in the regulation of VSMC proliferation and migration and the underlying mechanisms have not been identified. In this study, the effect of EVP on the platelet-derived growth factor (PDGF)-induced proliferation and migration of VSMCs was investigated. The results show that PDGF-BB-induced proliferation of VSMCs was inhibited by EVP at concentrations of 25, 50 or 100 µg/mL in a concentration-dependent manner, and a migration assay showed that EVP inhibited cell migration. Cell cycle analysis was performed to confirm the mechanism by which cell proliferation and migration was inhibited. The results indicate that proteins involved in the cell cycle, such as cyclin, CDK and phosphorylated Rb, were downregulated by EVP at concentrations of 100 µg/mL, thereby increasing the proportion of cells in the G0/G1 phase and inhibiting cell cycle progression. In the PDGF receptor (PDGFR) signaling pathway, phosphorylation of the PDGFR was inhibited by EVP at concentrations of 100 µg/mL, and PLCγ phosphorylation was also decreased. The PDGF-BB-induced effect of EVP on the proliferation of VSMCs involved the inhibition of Akt phosphorylation and the reduction in the phosphorylation of MAPK proteins such as ERK, P38 and JNK. In conclusion, the results demonstrate that EVP inhibited PDGF-BB-induced VSMC proliferation and migration by regulating cell-cycle-related proteins.

5.
FASEB J ; 35(2): e21179, 2021 02.
Article in English | MEDLINE | ID: mdl-33184929

ABSTRACT

Type 2 diabetes mellitus may result from insulin resistance in skeletal muscle. Prokineticin receptor 1 (Prokr1) improves metabolic phenotype in adipose tissue and the cardiovascular system; however, its effects on skeletal muscle have not been investigated. We investigated the Prokr1 signaling pathways and its metabolic function in murine myoblast, satellite cells, and their differentiated myotubes. We measured the expression levels of Prokr1 in the skeletal muscle of mice as well as human skeletal muscle cell-derived myotubes. Prokineticin 2 (PROK2), a ligand of PROKR1, induced calcium mobilization in a dose-dependent manner and altered the mRNA levels of 578 genes in PROKR1-overexpressed HEK293T cells. Functional enrichment of differentially expressed genes revealed that PROKR1 activated Gq-mediated PI3K/AKT and MAPK/ERK signaling pathways in skeletal muscle cells. Prokr1 significantly activated the PI3K/AKT signaling pathway in myotubes derived from C2C12 and satellite cells, regardless of the presence or absence of insulin. Prokr1 also promoted the translocation of glucose transporter 4 (GLUT4) into the plasma membrane. In palmitate-induced insulin-resistant myotubes, Prokr1 enhanced insulin-stimulated AKT phosphorylation, GLUT4 translocation, and glucose uptake. mRNA and protein levels of Prokr1 were significantly decreased in skeletal muscle and white adipose tissue of diet-induced obese mice, and the amount of PROKR1 protein was significantly decreased in human skeletal muscle cell-derived myotubes under insulin resistance conditions. Taken together, these results demonstrate that Prokr1 plays an important role in insulin sensitivity and is a potential therapeutic target to ameliorate insulin resistance in skeletal muscle.


Subject(s)
Insulin Resistance , Muscle Fibers, Skeletal/metabolism , Receptors, G-Protein-Coupled/metabolism , Satellite Cells, Skeletal Muscle/metabolism , Aged , Animals , Diabetes Mellitus, Type 2/metabolism , Female , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Muscle Development/genetics , Receptors, G-Protein-Coupled/genetics , Signal Transduction/genetics , Tissue Donors , Transfection
6.
Drug Dev Res ; 83(7): 1600-1612, 2022 11.
Article in English | MEDLINE | ID: mdl-36124859

ABSTRACT

µ-Opioid receptor (MOR) Gi-biased agonists with no recruitment of ß-arrestin were introduced as a new analgesic strategy to overcome the conventional undesirable side effects of opioid receptor-targeted drugs, such as tolerance, addiction, respiratory depression, and constipation. For the development of novel Gi-biased MOR agonists, the design, synthesis, and structure-activity relationship (SAR) analysis of the aminopyrazole core skeleton were conducted according to the current SAR data of PZM21 (2a) and its derivatives. New derivatives were biologically evaluated for their agonistic effects on cyclic adenosine monophosphate (cAMP) levels for the Gi pathway and ß-arrestin recruitment in MOR/κ-opioid receptor/δ opioid receptor. An optimized selective Gi-biased agonist, Compound 17a, was discovered with potent cAMP inhibitory activities, with a 50% efficacy concentration value of 87.1 nM and no activity in the MOR ß-arrestin pathway and other subtypes. The in vivo pain relief efficacy of Compound 17a was confirmed in a dose-dependent manner with spinal nerve ligation and cisplatin-induced peripheral neuropathy rodent neuropathic pain models.


Subject(s)
Neuralgia , Receptors, Opioid, mu , Humans , Receptors, Opioid, mu/agonists , Analgesics, Opioid/pharmacology , beta-Arrestins/metabolism , Receptors, Opioid/metabolism , Pyrazoles
7.
Int J Mol Sci ; 23(10)2022 May 12.
Article in English | MEDLINE | ID: mdl-35628222

ABSTRACT

Minoxidil is the most widely used treatment for hair growth, but has been associated with several side effects. In this study, we investigated the effects of heat-killed Enterococcus faecalis EF-2001 on hair loss prevention and regrowth using human dermal papilla cells and male C57BL/6 mice. To examine the effects of EF-2001, we used minoxidil as the positive control. In the in vitro experiments, EF-2001 treatment (75-500 µg/mL) led to the proliferation of human dermal papilla cells in a concentration-dependent manner. In the in vivo experiment, the topical application of 200 µL EF-2001 on the dorsal surface of C57BL/6 male mice led to hair growth. Changes in hair regrowth were examined by visual comparison and hematoxylin and eosin staining of skin sections. We also determined the expression levels of marker genes (Wnt) and growth factors (fibroblast growth factor, insulin growth factor 1, and vascular endothelial growth factor) in the skin tissues of the back of each mouse using a quantitative polymerase chain reaction. EF-2001 accelerated the progression of hair regrowth in mice and promoted hair-follicle conversion from telogen to anagen, likely by increasing the expression levels of growth factors and marker genes.


Subject(s)
Enterococcus faecalis , Minoxidil , Animals , Cell Proliferation , Hair , Hot Temperature , Humans , Intercellular Signaling Peptides and Proteins/pharmacology , Male , Mice , Mice, Inbred C57BL , Minoxidil/pharmacology , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/pharmacology
8.
Sensors (Basel) ; 20(4)2020 Feb 21.
Article in English | MEDLINE | ID: mdl-32098252

ABSTRACT

Myoelectric prostheses assist users to live their daily lives. However, the majority of users are primarily confined to forearm amputees because the surface electromyography (sEMG) that understands the motion intents should be acquired from a residual limb for control of the myoelectric prosthesis. This study proposes a novel fabric vest socket that includes embroidered electrodes suitable for a high-level upper amputee, especially for shoulder disarticulation. The fabric vest socket consists of rigid support and a fabric vest with embroidered electrodes. Several experiments were conducted to verify the practicality of the developed vest socket with embroidered electrodes. The sEMG signals were measured using commercial Ag/AgCl electrodes for a comparison to verify the performance of the embroidered electrodes in terms of signal amplitudes, the skin-electrode impedance, and signal-to-noise ratio (SNR). These results showed that the embroidered electrodes were as effective as the commercial electrodes. Then, posture classification was carried out by able-bodied subjects for the usability of the developed vest socket. The average classification accuracy for each subject reached 97.92%, and for all the subjects it was 93.2%. In other words, the fabric vest socket with the embroidered electrodes could measure sEMG signals with high accuracy. Therefore, it is expected that it can be readily worn by high-level amputees to control their myoelectric prostheses, as well as it is cost effective for fabrication as compared with the traditional socket.


Subject(s)
Electrodes , Electromyography/methods , Humans , Neural Networks, Computer , Prosthesis Design , Signal Processing, Computer-Assisted , Signal-To-Noise Ratio
9.
J Biol Chem ; 293(51): 19546-19558, 2018 12 21.
Article in English | MEDLINE | ID: mdl-30429221

ABSTRACT

In response to genotoxic stress, the tumor suppressor protein p73 induces apoptosis and cell cycle arrest. Despite extensive studies on p73-mediated apoptosis, little is known about the cytoplasmic apoptotic function of p73. Here, using H1299 lung cancer cells and diverse biochemical approaches, including colony formation, DNA fragmentation, GST pulldown, and apoptosis assays along with NMR spectroscopy, we show that p73 induces transcription-independent apoptosis via its transactivation domain (TAD) through a mitochondrial pathway and that this apoptosis is mediated by the interaction between p73-TAD and the anti-apoptotic protein B-cell lymphoma-extra large (Bcl-XL or BCL2L1). This binding disrupted an interaction between Bcl-XL and the pro-apoptotic protein BH3-interacting domain death agonist (Bid). In particular, we found that a 16-mer p73-TAD peptide motif (p73-TAD16) mediates transcription-independent apoptosis, accompanied by cytochrome c release from the mitochondria, by interacting with Bcl-XL Interestingly, the structure of the Bcl-XL-p73-TAD16 peptide complex revealed a novel mechanism of Bcl-XL recognition by p73-TAD. We observed that the α-helical p73-TAD16 peptide binds to a noncanonical site in Bcl-XL, comprising the BH1, BH2, and BH3 domains in an orientation opposite to those of pro-apoptotic BH3 peptides. Taken together, our results indicate that the cytoplasmic apoptotic function of p73 is mediated through a noncanonical mode of Bcl-XL recognition. This finding sheds light on a critical transcription-independent, p73-mediated mechanism for apoptosis induction, which has potential implications for anticancer therapy.


Subject(s)
Apoptosis , Cytoplasm/metabolism , Tumor Protein p73/metabolism , bcl-X Protein/metabolism , Cell Line, Tumor , Cytoplasm/pathology , Humans , Mitochondria/metabolism , Mitochondria/pathology , Models, Molecular , Protein Binding , Protein Domains , Transcription, Genetic , Tumor Protein p73/chemistry , bcl-X Protein/genetics
10.
J Biol Chem ; 292(28): 11804-11814, 2017 07 14.
Article in English | MEDLINE | ID: mdl-28559278

ABSTRACT

MicroRNAs (miRNAs) are small, noncoding RNAs that post-transcriptionally regulate gene expression. For example, miRNAs repress gene expression by recruiting the miRNA-induced silencing complex (miRISC), a ribonucleoprotein complex that contains miRNA-engaged Argonaute (Ago) and the scaffold protein GW182. Recently, ubiquitin-protein ligase E3 component N-recognin 5 (UBR5) has been identified as a component of miRISC. UBR5 directly interacts with GW182 proteins and participates in miRNA silencing by recruiting downstream effectors, such as the translation regulator DEAD-box helicase 6 (DDX6) and transducer of ERBB2,1/2,2 (Tob1/2), to the Ago-GW182 complex. However, the regulation of miRISC-associated UBR5 remains largely elusive. In the present study, we showed that UBR5 down-regulates the levels of TNF receptor-associated factor 3 (TRAF3), a key component of Toll-like receptor signaling, via the miRNA pathway. We further demonstrated that p90 ribosomal S6 kinase (p90RSK) is an upstream regulator of UBR5. p90RSK phosphorylates UBR5 at Thr637, Ser1227, and Ser2483, and this phosphorylation is required for the translational repression of TRAF3 mRNA. Phosphorylated UBR5 co-localized with GW182 and Ago2 in cytoplasmic speckles, which implies that miRISC is affected by phospho-UBR5. Collectively, these results indicated that the p90RSK-UBR5 pathway stimulates miRNA-mediated translational repression of TRAF3. Our work has added another layer to the regulation of miRISC.


Subject(s)
Autoantigens/metabolism , MicroRNAs/metabolism , RNA-Binding Proteins/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Signal Transduction , TNF Receptor-Associated Factor 3/metabolism , Toll-Like Receptors/metabolism , Ubiquitin-Protein Ligases/metabolism , 3' Untranslated Regions , Amino Acid Substitution , Animals , Autoantigens/genetics , COS Cells , Chlorocebus aethiops , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , HeLa Cells , Humans , Mutation , Phosphorylation , Protein Processing, Post-Translational , RNA Interference , RNA, Messenger/antagonists & inhibitors , RNA, Messenger/metabolism , RNA-Binding Proteins/antagonists & inhibitors , RNA-Binding Proteins/genetics , Recombinant Fusion Proteins/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/genetics , TNF Receptor-Associated Factor 3/antagonists & inhibitors , TNF Receptor-Associated Factor 3/genetics , Ubiquitin-Protein Ligases/antagonists & inhibitors , Ubiquitin-Protein Ligases/genetics
11.
Hum Mol Genet ; 25(12): 2514-2524, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27206983

ABSTRACT

p53 has been implicated in the pathophysiology of Huntington's disease (HD). Nonetheless, the molecular mechanism of how p53 may play a unique role in the pathology remains elusive. To address this question at the molecular and cellular biology levels, we initially screened differentially expressed molecules specifically dependent on p53 in a HD animal model. Among the candidate molecules, wild-type p53-induced gene 1 (Wig1) is markedly upregulated in the cerebral cortex of HD patients. Wig1 preferentially upregulates the level of mutant Huntingtin (Htt) compared with wild-type Htt. This allele-specific characteristic of Wig1 is likely to be explained by higher affinity binding to mutant Htt transcripts than normal counterpart for the stabilization. Knockdown of Wig1 level significantly ameliorates mutant Htt-elicited cytotoxicity and aggregate formation. Together, we propose that Wig1, a key p53 downstream molecule in HD condition, play an important role in stabilizing mutant Htt mRNA and thereby accelerating HD pathology in the mHtt-p53-Wig1 positive feedback manner.


Subject(s)
Carrier Proteins/biosynthesis , Huntingtin Protein/genetics , Huntington Disease/genetics , Nuclear Proteins/biosynthesis , Tumor Suppressor Protein p53/genetics , Adult , Aged , Aged, 80 and over , Alleles , Animals , Autopsy , Carrier Proteins/genetics , Cerebral Cortex/metabolism , Cerebral Cortex/physiology , Disease Models, Animal , Female , Gene Expression Regulation , Gene Knockdown Techniques , Humans , Huntington Disease/pathology , Male , Mice , Middle Aged , Mutant Proteins/genetics , Nuclear Proteins/genetics , RNA, Messenger/genetics , RNA-Binding Proteins
12.
Cereb Cortex ; 27(8): 3918-3929, 2017 08 01.
Article in English | MEDLINE | ID: mdl-27371763

ABSTRACT

Neuronal nitric oxide synthase is involved in diverse signaling cascades that regulate neuronal development and functions via S-Nitrosylation-mediated mechanism or the soluble guanylate cyclase (sGC)/cyclic guanosine monophosphate (cGMP) pathway activated by nitric oxide. Although it has been studied extensively in vitro and in invertebrate animals, effects on mammalian brain development and underlying mechanisms remain poorly understood. Here we report that genetic deletion of "Nos1" disrupts dendritic development, whereas pharmacological inhibition of the sGC/cGMP pathway does not alter dendritic growth during cerebral cortex development. Instead, nuclear distribution element-like (NDEL1), a protein that regulates dendritic development, is specifically S-nitrosylated at cysteine 203, thereby accelerating dendritic arborization. This post-translational modification is enhanced by N-methyl-D-aspartate receptor-mediated neuronal activity, the main regulator of dendritic formation. Notably, we found that disruption of S-Nitrosylation of NDEL1 mediates impaired dendritic maturation caused by developmental alcohol exposure, a model of developmental brain abnormalities resulting from maternal alcohol use. These results highlight S-Nitrosylation as a key activity-dependent mechanism underlying neonatal brain maturation and suggest that reduction of S-Nitrosylation of NDEL1 acts as a pathological factor mediating neurodevelopmental abnormalities caused by maternal alcohol exposure.


Subject(s)
Carrier Proteins/metabolism , Dendrites/metabolism , Fetal Alcohol Spectrum Disorders/metabolism , Prefrontal Cortex/metabolism , Pyramidal Cells/metabolism , Synaptic Transmission/physiology , Animals , Carrier Proteins/genetics , Dendrites/drug effects , Dendrites/pathology , Disease Models, Animal , Fetal Alcohol Spectrum Disorders/pathology , Humans , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Nitric Oxide Synthase Type I/deficiency , Nitric Oxide Synthase Type I/genetics , Prefrontal Cortex/drug effects , Prefrontal Cortex/growth & development , Prefrontal Cortex/pathology , Pyramidal Cells/drug effects , Pyramidal Cells/pathology
13.
Appl Microbiol Biotechnol ; 102(11): 4729-4739, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29654557

ABSTRACT

Despite the relatively low transfection efficiency and low specific foreign protein productivity (qp) of Chinese hamster ovary (CHO) cell-based transient gene expression (TGE) systems, TGE-based recombinant protein production technology predominantly employs CHO cells for pre-clinical research and development purposes. To improve TGE in CHO cells, Epstein-Barr virus nuclear antigen-1 (EBNA-1)/polyoma virus large T antigen (PyLT)-co-amplified recombinant CHO (rCHO) cells stably expressing EBNA-1 and PyLT were established using dihydrofolate reductase/methotrexate-mediated gene amplification. The level of transiently expressed Fc-fusion protein was significantly higher in the EBNA-1/PyLT-co-amplified pools compared to control cultures. Increased Fc-fusion protein production by EBNA-1/PyLT-co-amplification resulted from a higher qp attributable to EBNA-1 but not PyLT expression. The qp for TGE-based production with EBNA-1/PyLT-co-amplified rCHO cells (EP-amp-20) was approximately 22.9-fold that of the control culture with CHO-DG44 cells. Rather than improved transfection efficiency, this cell line demonstrated increased levels of mRNA expression and replicated DNA, contributing to an increased qp. Furthermore, there was no significant difference in N-glycan profiles in Fc-fusion proteins produced in the TGE system. Taken together, these results showed that the use of rCHO cells with co-amplified expression of the viral elements EBNA-1 and PyLT improves TGE-based therapeutic protein production dramatically. Therefore, EBNA-1/PyLT-co-amplified rCHO cells will likely be useful as host cells in CHO cell-based TGE systems.


Subject(s)
Antigens, Polyomavirus Transforming/genetics , Epstein-Barr Virus Nuclear Antigens/genetics , Gene Amplification , Nucleic Acid Amplification Techniques/methods , Animals , CHO Cells , Cricetinae , Cricetulus , Recombinant Proteins/genetics , Transfection
14.
PLoS Genet ; 11(3): e1005099, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25816370

ABSTRACT

Postembryonic development in Caenorhabditis elegans is a powerful model for the study of the temporal regulation of development and for the roles of microRNAs in controlling gene expression. Stable switch-like changes in gene expression occur during development as stage-specific microRNAs are expressed and subsequently down-regulate other stage-specific factors, driving developmental progression. Key genes in this regulatory network are phylogenetically conserved and include the post-transcriptional microRNA repressor LIN-28; the nuclear hormone receptor DAF-12; and the microRNAs LIN-4, LET-7, and the three LET-7 family miRNAs (miR-48, miR-84, and miR-241). DAF-12 is known to regulate transcription of miR-48, miR-84 and miR-241, but its contribution is insufficient to account for all of the transcriptional regulation implied by the mutant phenotypes. In this work, the GATA-family transcription factor ELT-1 is identified from a genetic enhancer screen as a regulator of developmental timing in parallel to DAF-12, and is shown to do so by promoting the expression of the LET-7, miR-48, miR-84, and miR-241 microRNAs. The role of ELT-1 in developmental timing is shown to be separate from its role in cell-fate maintenance during post-embryonic development. In addition, analysis of Chromatin Immnoprecipitation (ChIP) data from the modENCODE project and this work suggest that the contribution of ELT-1 to the control of let-7 family microRNA expression is likely through direct transcription regulation.


Subject(s)
Caenorhabditis elegans Proteins/biosynthesis , Cell Differentiation/genetics , GATA Transcription Factors/biosynthesis , MicroRNAs/biosynthesis , Transcription, Genetic , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans Proteins/genetics , GATA Transcription Factors/genetics , Gene Expression Regulation, Developmental , MicroRNAs/genetics , Mutation , Receptors, Cytoplasmic and Nuclear/genetics
15.
Biochem Biophys Res Commun ; 480(3): 422-428, 2016 Nov 18.
Article in English | MEDLINE | ID: mdl-27773815

ABSTRACT

Although the ubiquitin-proteasome system is believed to play an important role in the pathogenesis of familial amyotrophic lateral sclerosis (FALS), caused by mutations in Cu/Zn-superoxide dismutase 1 (SOD1), the mechanism of how mutant SOD1 protein is regulated in cells is still poorly understood. Here we have demonstrated that cellular inhibitor of apoptosis proteins (cIAPs) are specifically associated with FALS-linked mutant SOD1 (mSOD1) and that this interaction promotes the ubiquitin-dependent proteasomal degradation of mutant SOD1. By utilizing cumate inducible SOD1 cells, we also showed that knock-down or pharmacologic depletion of cIAPs leads to H2O2 induced cytotoxicity in mSOD1 expressing cells. Altogether, our results reveal a novel role of cIAPs in FALS-associated mutant SOD1 regulation.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Inhibitor of Apoptosis Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Amyotrophic Lateral Sclerosis/genetics , HEK293 Cells , Humans , Mutation/genetics , Ubiquitination
16.
Biol Pharm Bull ; 37(10): 1655-60, 2014.
Article in English | MEDLINE | ID: mdl-25099343

ABSTRACT

Diacylglycerol acyltransferase 2 (DGAT2), which catalyzes the final step in triacylglycerol (TG) synthesis, is a key enzyme associated with hepatic steatosis and insulin resistance. Here, using an in vitro screen of 20000 molecules, we identified a class of compounds with a substituted 1H-pyrrolo[2,3-b]pyridine core which proved to be potent and selective inhibitors of human DGAT2. Of these compounds, H2-003 and -005 exhibited a considerable reduction in TG biosynthesis in HepG2 hepatic cells and 3T3-L1 preadipose cells. These compounds exert DGAT2-specific-inhibitory activity, which was further confirmed in DGAT2- or DGAT1-overexpressing HEK293 cells. In addition, these compounds almost completely abolished lipid droplet formation in 3T3-L1 cells when co-treated with a DGAT1 inhibitor, which was not attained using either a DGAT2 or DGAT1 inhibitor alone. Collectively, we identified two DGAT2 inhibitors, H2-003 and -005. These compounds will aid in DGAT2-related lipid metabolism research as well as in therapeutic development for the treatment of metabolic diseases associated with excessive TG.


Subject(s)
Acetates/chemistry , Acetates/pharmacology , Diacylglycerol O-Acyltransferase/antagonists & inhibitors , Drug Discovery/methods , Pyridines/chemistry , Pyridines/pharmacology , 3T3-L1 Cells , Animals , Diacylglycerol O-Acyltransferase/metabolism , HEK293 Cells , Hep G2 Cells , Humans , Mice
17.
Biol Pharm Bull ; 36(11): 1754-9, 2013.
Article in English | MEDLINE | ID: mdl-23985900

ABSTRACT

G-protein coupled receptor 43 (GPR43) serves as a receptor for short-chain fatty acids (SCFAs), implicated in neutrophil migration and inflammatory cytokine production. However, the intracellular signaling pathway mediating GPR43 signaling remains unclear. Here, we show that ß-arrestin 2 mediates the internalization of GPR43 by agonist. Agonism of GPR43 reduced the phosphorylation and nuclear translocation of nuclear factor-κB (NF-κB), which was relieved by short interfering RNA (siRNA) of ß-arrestin 2. Subsequently, mRNA expression of proinflammatory cytokines, interleukin (IL)-6 and IL-1ß, was downregulated by activation of GPR43 and knockdown of ß-arrestin 2 recovered the expression of the cytokines. Taken together, these results suggest that GPR43 may be a plausible target for a variety of inflammatory diseases.


Subject(s)
Arrestins/metabolism , NF-kappa B/metabolism , Receptors, Cell Surface/metabolism , HEK293 Cells , HeLa Cells , Humans , beta-Arrestin 2 , beta-Arrestins
18.
Biol Pharm Bull ; 36(7): 1167-73, 2013.
Article in English | MEDLINE | ID: mdl-23585481

ABSTRACT

Diacylglycerol acyltransferase 2 (DGAT2) is one of two distinct DGAT enzymes that catalyze the last step in triacylglycerol (TG) synthesis. Findings from previous studies suggest that inhibition of DGAT2 is a promising strategy for the treatment of hepatic steatosis and insulin resistance. Here, we identified compound 122 as a potent and selective inhibitor of human DGAT2, which appeared to act competitively against oleoyl-CoA in vitro. The selective inhibition of DGAT2 was also confirmed by the reductions in enzymatic activity and de novo TG synthesis in DGAT2-overexpressing HEK293 cells and hepatic cells HepG2. Compound 122, as a newly identified inhibitor of DGAT2, will be useful for the research on DGAT2-related lipid metabolism as well as the development of therapeutic drug for several metabolic diseases.


Subject(s)
Diacylglycerol O-Acyltransferase/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Small Molecule Libraries/pharmacology , Animals , Diacylglycerol O-Acyltransferase/genetics , Enzyme Inhibitors/chemistry , HEK293 Cells , High-Throughput Screening Assays , Humans , Molecular Structure , Sf9 Cells , Small Molecule Libraries/chemistry , Spodoptera , Structure-Activity Relationship , Transfection
19.
bioRxiv ; 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37745318

ABSTRACT

Air pollution remains a great challenge for public health, with the detrimental effects of air pollution on cardiovascular, rhinosinusitis, and pulmonary health increasingly well understood. Recent epidemiological associations point to the adverse effects of air pollution on cognitive decline and neurodegenerative diseases. Mouse models of subchronic exposure to PM 2.5 (ambient air particulate matter < 2.5 µm) provide an opportunity to demonstrate the causality of target diseases. Here, we subchronically exposed mice to concentrated ambient PM 2.5 for 7 weeks (5 days/week; 8h/day) and assessed its effect on behavior using standard tests measuring cognition or anxiety-like behaviors. Average daily PM 2.5 concentration was 200 µg/m 3 in the PM 2.5 group and 10 µg/m 3 in the filtered air group. The novel object recognition (NOR) test was used to assess the effect of PM 2.5 exposure on recognition memory. The increase in exploration time for a novel object versus a familiarized object was lower for PM 2.5 -exposed mice (42% increase) compared to the filtered air (FA) control group (110% increase). In addition, the calculated discrimination index for novel object recognition was significantly higher in FA mice (67 %) compared to PM 2.5 exposed mice (57.3%). The object location test (OLT) was used to examine the effect of PM 2.5 exposure on spatial memory. In contrast to the FA-exposed control mice, the PM 2.5 exposed mice exhibited no significant increase in their exploration time between novel location versus familiarized location indicating their deficit in spatial memory. Furthermore, the discrimination index for novel location was significantly higher in FA mice (62.6%) compared to PM 2.5 exposed mice (51%). Overall, our results demonstrate that subchronic exposure to higher levels of PM 2.5 in mice causes impairment of novelty recognition and spatial memory.

20.
J Med Chem ; 66(7): 5154-5170, 2023 04 13.
Article in English | MEDLINE | ID: mdl-36987735

ABSTRACT

Chronic exposure to stress or unwanted stimuli has been known to activate kappa opioid receptor/dynorphin (KOR/DYN) systems, which could induce depressive states and develop into some psychiatric disorders. Here, we report the first discovery of pyrazoloisoquinoline-based novel KOR ß-arrestin inverse agonists through synthesis, structure-activity relationships, optimization, and the biological evaluations of µ/κ/δ opioid receptor activities with cAMP and ß-arrestin recruitment assays. The optimized compound 7q shows potent and selective ß-arrestin inverse agonism at KOR with an EC50 value of 9.33 nM in contrast to lower activities at DOR and no activity at MOR. Moreover, we use molecular dynamics simulations to predict the binding mode of the inverse agonist and propose a mechanism for the inverse agonism. We find that the transmembrane helix 6 position of the activated state is different for the OR subtypes, leading to significantly different interactions between the receptor and ß-arrestin.


Subject(s)
Drug Inverse Agonism , Receptors, Opioid, kappa , Humans , Receptors, Opioid, kappa/metabolism , beta-Arrestins/metabolism , Dynorphins/metabolism , Structure-Activity Relationship , Receptors, Opioid, mu/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL