Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Article in English | MEDLINE | ID: mdl-33431677

ABSTRACT

Hepatitis C virus (HCV) is a major worldwide health burden, and a preventive vaccine is needed for global control or eradication of this virus. A substantial hurdle to an effective HCV vaccine is the high variability of the virus, leading to immune escape. The E1E2 glycoprotein complex contains conserved epitopes and elicits neutralizing antibody responses, making it a primary target for HCV vaccine development. However, the E1E2 transmembrane domains that are critical for native assembly make it challenging to produce this complex in a homogenous soluble form that is reflective of its state on the viral envelope. To enable rational design of an E1E2 vaccine, as well as structural characterization efforts, we have designed a soluble, secreted form of E1E2 (sE1E2). As with soluble glycoprotein designs for other viruses, it incorporates a scaffold to enforce assembly in the absence of the transmembrane domains, along with a furin cleavage site to permit native-like heterodimerization. This sE1E2 was found to assemble into a form closer to its expected size than full-length E1E2. Preservation of native structural elements was confirmed by high-affinity binding to a panel of conformationally specific monoclonal antibodies, including two neutralizing antibodies specific to native E1E2 and to its primary receptor, CD81. Finally, sE1E2 was found to elicit robust neutralizing antibodies in vivo. This designed sE1E2 can both provide insights into the determinants of native E1E2 assembly and serve as a platform for production of E1E2 for future structural and vaccine studies, enabling rational optimization of an E1E2-based antigen.


Subject(s)
Hepacivirus/drug effects , Hepatitis C Antibodies/biosynthesis , Hepatitis C/prevention & control , Viral Envelope Proteins/immunology , Viral Hepatitis Vaccines/immunology , Animals , Antibodies, Monoclonal/biosynthesis , Antibodies, Neutralizing/biosynthesis , Epitope Mapping , Epitopes/chemistry , Epitopes/immunology , Female , Gene Expression , Hepacivirus/immunology , Hepacivirus/pathogenicity , Hepatitis C/immunology , Hepatitis C/pathology , Hepatitis C/virology , Humans , Immunogenicity, Vaccine , Mice , Models, Molecular , Protein Binding , Protein Conformation , Protein Engineering/methods , Protein Multimerization , Receptors, Virus/genetics , Receptors, Virus/immunology , Recombinant Proteins/administration & dosage , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Solubility , Tetraspanin 28/genetics , Tetraspanin 28/immunology , Vaccination , Viral Envelope Proteins/administration & dosage , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics , Viral Hepatitis Vaccines/administration & dosage , Viral Hepatitis Vaccines/chemistry , Viral Hepatitis Vaccines/genetics
2.
BMC Bioinformatics ; 21(1): 160, 2020 Apr 29.
Article in English | MEDLINE | ID: mdl-32349673

ABSTRACT

BACKGROUND: Cytochrome P450 monooxygenases (termed CYPs or P450s) are hemoproteins ubiquitously found across all kingdoms, playing a central role in intracellular metabolism, especially in metabolism of drugs and xenobiotics. The explosive growth of genome sequencing brings a new set of challenges and issues for researchers, such as a systematic investigation of CYPs across all kingdoms in terms of identification, classification, and pan-CYPome analyses. Such investigation requires an automated tool that can handle an enormous amount of sequencing data in a timely manner. RESULTS: CYPminer was developed in the Python language to facilitate rapid, comprehensive analysis of CYPs from genomes of all kingdoms. CYPminer consists of two procedures i) to generate the Genome-CYP Matrix (GCM) that lists all occurrences of CYPs across the genomes, and ii) to perform analyses and visualization of the GCM, including pan-CYPomes (pan- and core-CYPome), CYP co-occurrence networks, CYP clouds, and genome clustering data. The performance of CYPminer was evaluated with three datasets from fungal and bacterial genome sequences. CONCLUSIONS: CYPminer completes CYP analyses for large-scale genomes from all kingdoms, which allows systematic genome annotation and comparative insights for CYPs. CYPminer also can be extended and adapted easily for broader usage.


Subject(s)
Cytochrome P-450 Enzyme System/analysis , Cytochrome P-450 Enzyme System/metabolism , Data Analysis , Databases, Genetic , Genome , Phylogeny , Automation , Cluster Analysis , Fungi/genetics , Gene Regulatory Networks , Software , User-Computer Interface
3.
Plant Biotechnol J ; 16(11): 1904-1917, 2018 11.
Article in English | MEDLINE | ID: mdl-29604169

ABSTRACT

Panax ginseng C. A. Meyer, reputed as the king of medicinal herbs, has slow growth, long generation time, low seed production and complicated genome structure that hamper its study. Here, we unveil the genomic architecture of tetraploid P. ginseng by de novo genome assembly, representing 2.98 Gbp with 59 352 annotated genes. Resequencing data indicated that diploid Panax species diverged in association with global warming in Southern Asia, and two North American species evolved via two intercontinental migrations. Two whole genome duplications (WGD) occurred in the family Araliaceae (including Panax) after divergence with the Apiaceae, the more recent one contributing to the ability of P. ginseng to overwinter, enabling it to spread broadly through the Northern Hemisphere. Functional and evolutionary analyses suggest that production of pharmacologically important dammarane-type ginsenosides originated in Panax and are produced largely in shoot tissues and transported to roots; that newly evolved P. ginseng fatty acid desaturases increase freezing tolerance; and that unprecedented retention of chlorophyll a/b binding protein genes enables efficient photosynthesis under low light. A genome-scale metabolic network provides a holistic view of Panax ginsenoside biosynthesis. This study provides valuable resources for improving medicinal values of ginseng either through genomics-assisted breeding or metabolic engineering.


Subject(s)
Genome, Plant/genetics , Panax/genetics , Adaptation, Biological/genetics , Biological Evolution , Diploidy , Genes, Chloroplast/genetics , Genes, Plant/genetics , Ginsenosides/biosynthesis , Panax/metabolism , Tetraploidy
4.
Graefes Arch Clin Exp Ophthalmol ; 256(11): 2113-2125, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30215097

ABSTRACT

PURPOSE: To create new immunodeficient Royal College of Surgeons (RCS) rats by introducing the defective MerTK gene into athymic nude rats. METHODS: Female homozygous RCS (RCS-p+/RCS-p+) and male nude rats (Hsd:RH-Foxn1mu, mutation in the foxn1 gene; no T cells) were crossed to produce heterozygous F1 progeny. Double homozygous F2 progeny obtained by crossing the F1 heterozygotes was identified phenotypically (hair loss) and genotypically (RCS-p+ gene determined by PCR). Retinal degenerative status was confirmed by optical coherence tomography (OCT) imaging, electroretinography (ERG), optokinetic (OKN) testing, superior colliculus (SC) electrophysiology, and by histology. The effect of xenografts was assessed by transplantation of human embryonic stem cell-derived retinal pigment epithelium (hESC-RPE) and human-induced pluripotent stem cell-derived RPE (iPS-RPE) into the eye. Morphological analysis was conducted based on hematoxylin and eosin (H&E) and immunostaining. Age-matched pigmented athymic nude rats were used as control. RESULTS: Approximately 6% of the F2 pups (11/172) were homozygous for RCS-p+ gene and Foxn1mu gene. Homozygous males crossed with heterozygous females resulted in 50% homozygous progeny for experimentation. OCT imaging demonstrated significant loss of retinal thickness in homozygous rats. H&E staining showed photoreceptor thickness reduced to 1-3 layers at 12 weeks of age. Progressive loss of visual function was evidenced by OKN testing, ERG, and SC electrophysiology. Transplantation experiments demonstrated survival of human-derived cells and absence of apparent immune rejection. CONCLUSIONS: This new rat animal model developed by crossing RCS rats and athymic nude rats is suitable for conducting retinal transplantation experiments involving xenografts.


Subject(s)
Disease Models, Animal , Human Embryonic Stem Cells/transplantation , Immunologic Deficiency Syndromes/therapy , Induced Pluripotent Stem Cells/transplantation , Retinal Dystrophies/therapy , Retinal Pigment Epithelium/transplantation , Animals , Cell Survival , Electroretinography , Female , Genotyping Techniques , Graft Survival/physiology , Human Embryonic Stem Cells/physiology , Humans , Immunologic Deficiency Syndromes/diagnosis , Immunologic Deficiency Syndromes/physiopathology , Induced Pluripotent Stem Cells/physiology , Male , Phenotype , Rats , Rats, Nude , Retina/physiopathology , Retinal Dystrophies/diagnosis , Retinal Dystrophies/physiopathology , Retinal Pigment Epithelium/physiology , Tomography, Optical Coherence , c-Mer Tyrosine Kinase/genetics
5.
J Nanosci Nanotechnol ; 18(6): 3936-3943, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29442729

ABSTRACT

Sphingobium chungbukense DJ77 is a Gram-negative bacterium has metabolic capability of producing exopolysaccharide (EPS) as a potential reducing and stabilizing agent for metallic nanoparticle synthesis. In this study, we investigated the genomic and proteomic analysis to verify metabolic pathway and involved genes and enzymes related to EPS biosynthesis in S. chungbukense DJ77. End-sequencing results of randomly selected fosmid library, which were prepared from high molecular weight DNA of S. chungbukense DJ77, showed identity to sequences from genes related the EPS biosynthesis pathways in several bacteria. We also observed that proteomic responses in S. chungbukense DJ77 by heterogeneously expressing gelA and gelN involved in gellan biosynthesis in Sphingomonas elodea. Comparative two-dimensional gel electrophoresis revealed that both GelA and GelN altered internal expression levels of proteins involved in EPS biosynthesis in S. chungbukense DJ77. The results might provide the genomic and proteomic evidences for presence of EPS biosynthesis pathways in S. chungbukense DJ77.


Subject(s)
Polysaccharides/metabolism , Proteomics , Sphingomonadaceae/metabolism , Polysaccharides, Bacterial , Sphingomonas
6.
Molecules ; 22(12)2017 Dec 04.
Article in English | MEDLINE | ID: mdl-29207539

ABSTRACT

The effective production and usage of ginsenosides, given their distinct pharmacological effects, are receiving increasing amounts of attention. As the ginsenosides content differs in different parts of Panax ginseng, we wanted to assess and compare the ginsenosides content in the ginseng roots, leave, stems, and berries. To extract the ginsenosides, 70% (v/v) methanol was used. The optimal ultra-performance liquid chromatography-quadrupole time of flight mass spectrometry (UPLC-QTOF/MS) method was used to profile various ginsenosides from the different parts of P. ginseng. The datasets were then subjected to multivariate analysis including principal component analysis (PCA) and hierarchical clustering analysis (HCA). A UPLC-QTOF/MS method with an in-house library was constructed to profile 58 ginsenosides. With this method, a total of 39 ginsenosides were successfully identified and quantified in the ginseng roots, leave, stem, and berries. PCA and HCA characterized the different ginsenosides compositions from the different parts. The quantitative ginsenoside contents were also characterized from each plant part. The results of this study indicate that the UPLC-QTOF/MS method can be an effective tool to characterize various ginsenosides from the different parts of P. ginseng.


Subject(s)
Chromatography, High Pressure Liquid/methods , Ginsenosides/chemistry , Panax/chemistry , Plant Leaves/chemistry , Plant Roots/chemistry , Plant Stems/chemistry , Tandem Mass Spectrometry/methods
7.
Mol Genet Genomics ; 290(3): 1055-65, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25527477

ABSTRACT

We performed de novo transcriptome sequencing for Panax ginseng and Panax quinquefolius accessions using the 454 GS FLX Titanium System and discovered annotation-based genome-wide single-nucleotide polymorphism (SNPs) using next-generation ginseng transcriptome data without reference genome sequence. The comprehensive transcriptome characterization with the mature roots of four ginseng accessions generated 297,170 reads for 'Cheonryang' cultivar, 305,673 reads for 'Yunpoong' cultivar, 311,861 reads for the G03080 breeding line, and 308,313 reads for P. quinquefolius. In transcriptome assembly, the lengths of the sample read were 156.42 Mb for 'Cheonryang', 161.95 Mb for 'Yunpoong', 165.07 Mb for G03080 breeding line, and 166.48 Mb for P. quinquefolius. A total of 97 primer pairs were designed with the homozygous SNP presented in all four accessions. SNP genotyping using high-resolution melting (HRM) analysis was performed to validate the putative SNP markers of 97 primer pairs. Out of the 73 primer pairs, 73 primer pairs amplified the target sequence and 34 primer pairs showed polymorphic melting curves in samples from 11 P. ginseng cultivars and one P. quinquefolius accession. Among the 34 polymorphic HRM-SNP primers, four primers were useful to distinguish ginseng cultivars. In the present study, we demonstrated that de novo transcriptome assembly and mapping analyses are useful in providing four HRM-SNP primer pairs that reliably show a high degree of polymorphism among ginseng cultivars.


Subject(s)
Panax/genetics , Plant Roots/genetics , Polymorphism, Single Nucleotide/genetics , Transcriptome , Base Sequence , DNA Primers/genetics , DNA, Complementary/chemistry , DNA, Complementary/genetics , Gene Library , Genetic Markers/genetics , Genotype , High-Throughput Nucleotide Sequencing , Molecular Sequence Data , Sequence Analysis, DNA , Transition Temperature
8.
Nucleic Acids Res ; 40(5): 2258-70, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22064858

ABSTRACT

Generation of the 3' overhang is a critical event during homologous recombination (HR) repair of DNA double strand breaks. A 5'-3' nuclease, NurA, plays an important role in generating 3' single-stranded DNA during archaeal HR, together with Mre11-Rad50 and HerA. We have determined the crystal structures of apo- and dAMP-Mn(2)(+)-bound NurA from Pyrococcus furiousus (Pf NurA) to provide the basis for its cleavage mechanism. Pf NurA forms a pyramid-shaped dimer containing a large central channel on one side, which becomes narrower towards the peak of the pyramid. The structure contains a PIWI domain with high similarity to argonaute, endoV nuclease and RNase H. The two active sites, each of which contains Mn(2)(+) ion(s) and dAMP, are at the corners of the elliptical channel near the flat face of the dimer. The 3' OH group of the ribose ring is directed toward the channel entrance, explaining the 5'-3' nuclease activity of Pf NurA. We provide a DNA binding and cleavage model for Pf NurA.


Subject(s)
Archaeal Proteins/chemistry , Deoxyadenine Nucleotides/chemistry , Endodeoxyribonucleases/chemistry , Exodeoxyribonucleases/chemistry , Manganese/chemistry , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Binding Sites , Catalytic Domain , Crystallography , DNA Helicases/metabolism , DNA, Single-Stranded/chemistry , Dimerization , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , Exodeoxyribonucleases/genetics , Exodeoxyribonucleases/metabolism , Models, Molecular , Mutation , Pyrococcus furiosus/enzymology , Thermotoga maritima/enzymology
9.
BMC Complement Altern Med ; 14: 455, 2014 Nov 24.
Article in English | MEDLINE | ID: mdl-25418343

ABSTRACT

BACKGROUND: Panax ginseng is a famous traditional medicine in Korea for its beneficial effect on obesity, cardiac and liver associated diseases. The aim of this study was to investigate the metabolite in Panax ginseng (P. ginseng, Aralicaceae) berries depending on the ripen stages and evaluate its potential inhibition on adipocyte differentiation in 3 T3-L1 cells. METHODS: Different ripening stage samples of P. ginseng berry were analyzed through global metabolite profiling by NMR spectroscopy. Lipid accumulation in the cells was analyzed by Oil Red O staining. RESULTS: The PLS-DA clearly distinguished P. ginseng berry extract (PGBE) according to the partial ripe (PR), ripe(R) and fully ripe (FR) stage. Lipid accumulation of PGBE was examined by measuring triglyceride content and Oil-Red O staining. These results suggested that the FR stage of PGBE decrease in lipid accumulation during adipocyte differentiation and the amount of threonine, asparagine, fumarate, tyraine, tyrosine, and phenylalanine increased with longer ripening of ginseng berries. CONCLUSION: Metabolite profiling of P. ginseng was identified by 1H NMR spectra. P. ginseng extract efficiently inhibits adipogenesis in 3 T3-L1 adipocytes concluded that the P. ginseng has the antiobesity properties.


Subject(s)
Adipocytes/drug effects , Adipogenesis/drug effects , Fruit/chemistry , Lipid Metabolism/drug effects , Obesity/metabolism , Panax/chemistry , Plant Extracts/pharmacology , 3T3-L1 Cells , Adipocytes/metabolism , Animals , Cell Differentiation/drug effects , Mice , Proton Magnetic Resonance Spectroscopy/methods , Republic of Korea , Triglycerides/metabolism
10.
Food Sci Biotechnol ; 33(12): 2755-2760, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39184985

ABSTRACT

This study represents a visual detection for total biogenic monoamines with naked eye as a simple and rapid semi-quantitative method for biogenic amine monitoring. The equivalent reaction of H2O2 with ascorbic acid resulted in color development by an amine oxidase-peroxidase coupling reaction in the samples containing the biogenic monoamines higher than the subjected ascorbic acid by 10 µM. Upon employing the commercial doenjang extracts as a model food, an additional heating step was requested, and the expected ranges for the biogenic monoamines from 360 to 480 µM covered the real contents of the samples (360.2-407.3 µM). Therefore, this visual detection method makes it possible to decide with naked eye whether the sample contains the biogenic monoamines higher than the ascorbic acid supplemented as much as a control level on manufacturing sites without instrumental analysis.

11.
J Ginseng Res ; 48(2): 149-162, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38465223

ABSTRACT

Ginseng, the roots of Panax species, is an important medicinal herb used as a tonic. As ginsenosides are key bioactive components of ginseng, holistic chemical profiling of them has provided many insights into understanding ginseng. Mass spectrometry has been a major methodology for profiling, which has been applied to realize numerous goals in ginseng research, such as the discrimination of different species, geographical origins, and ages, and the monitoring of processing and biotransformation. This review summarizes the various applications of ginsenoside profiling in ginseng research over the last three decades that have contributed to expanding our understanding of ginseng. However, we also note that most of the studies overlooked a crucial factor that influences the levels of ginsenosides: genetic variation. To highlight the effects of genetic variation on the chemical contents, we present our results of untargeted and targeted ginsenoside profiling of different genotypes cultivated under identical conditions, in addition to data regarding genome-level genetic diversity. Additionally, we analyze the other limitations of previous studies, such as imperfect variable control, deficient metadata, and lack of additional effort to validate causation. We conclude that the values of ginsenoside profiling studies can be enhanced by overcoming such limitations, as well as by integrating with other -omics techniques.

12.
Plants (Basel) ; 12(6)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36986958

ABSTRACT

Panax ginseng Meyer grows in east Russia and Asia. There is a high demand for this crop due to its medicinal properties. However, its low reproductive efficiency has been a hindrance to the crop's widespread use. This study aims to establish an efficient regeneration and acclimatization system for the crop. The type of basal media and strength were evaluated for their effects on somatic embryogenesis, germination, and regeneration. The highest rate of somatic embryogenesis was achieved for the basal media MS, N6, and GD, with the optimal nitrogen content (≥35 mM) and NH4+/NO3- ratio (1:2 or 1:4). The full-strength MS medium was the best one for somatic embryo induction. However, the diluted MS medium had a more positive effect on embryo maturation. Additionally, the basal media affected shooting, rooting, and plantlet formation. The germination medium containing 1/2 MS facilitated good shoot development; however, the medium with 1/2 SH yielded outstanding root development. In vitro-grown roots were successfully transferred to soil, and they exhibited a high survival rate (86.3%). Finally, the ISSR marker analysis demonstrated that the regenerated plants were not different from the control. The obtained results provide valuable information for a more efficient micropropagation of various P. ginseng cultivars.

13.
Mol Biol Rep ; 39(1): 729-36, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21573801

ABSTRACT

Cleaved amplified polymorphic sequence (CAPS) marker system using mitochondrial consensus primers was applied for molecular identification of Korean ginseng cultivars (Panax ginseng). Initially, a total of 34 primers were tested to six Korean ginseng cultivars and two foreign Panax species, P. quinquefolius and P. notoginseng. In the polymerase chain reaction (PCR) amplification results, four primers (mt7, mt11, mt13, and mt18) generated co-dominant polymorphic banding patterns discriminating the Korean ginseng cultivars from P. quinquefolius and P. notoginseng. In the CAPS analysis results, the majority of the cleaved PCR products also yielded additional latent polymorphisms between the Korean ginseng cultivars and two foreign Panax species. Specific latent CAPS polymorphisms for cultivar Gopoong and Chunpoong were detected from internal region amplified with mt9 primer by treating HinfI and Tsp509I endonucleases, respectively. Sequencing analysis revealed that the length of amplified region of Korean ginseng cultivars was 2,179 bp, and those of P. quinquefolius and P. notoginseng were 2,178 and 2,185 bp, respectively. Blast search revealed that the amplified region was a mitochondrial cytochrome oxidase subunit 2 (cox2) gene intron II region. Nineteen single nucleotide polymorphisms (SNP) including each specific SNP for Gopoong and Chunpoong, and three insertion and deletion (InDel) polymorphisms were detected by sequence alignment. The CAPS markers developed in this study, which are specific to Gopoong and Chunpoong, and between the Korean ginseng cultivars and two foreign Panax species, will serve as a practical and reliable tool for their identification, purity maintenance, and selection of candidate lines and cultivars.


Subject(s)
DNA, Mitochondrial/genetics , Genetic Markers/genetics , Panax/genetics , Base Sequence , DNA Primers/genetics , Electrophoresis, Polyacrylamide Gel , Ethidium , Molecular Sequence Data , Polymerase Chain Reaction , Republic of Korea , Sequence Analysis, DNA , Species Specificity
14.
Proc Natl Acad Sci U S A ; 106(9): 3148-53, 2009 Mar 03.
Article in English | MEDLINE | ID: mdl-19204291

ABSTRACT

Tumor suppressor programmed cell death protein 4 (PDCD4) inhibits the translation initiation factor eIF4A, an RNA helicase that catalyzes the unwinding of secondary structure at the 5'-untranslated region of mRNAs and controls the initiation of translation. Here, we determined the crystal structure of the human eIF4A and PDCD4 complex. The structure reveals that one molecule of PDCD4 binds to the two eIF4A molecules through the two different binding modes. While the two MA3 domains of PDCD4 bind to one eIF4A molecule, the C-terminal MA3 domain alone of the same PDCD4 also interacts with another eIF4A molecule. The eIF4A-PDCD4 complex structure suggests that the MA3 domain(s) of PDCD4 binds perpendicular to the interface of the two domains of eIF4A, preventing the domain closure of eIF4A and blocking the binding of RNA to eIF4A, both of which are required events in the function of eIF4A helicase. The structure, together with biochemical analyses, reveals insights into the inhibition mechanism of eIF4A by PDCD4 and provides a framework for designing chemicals that target eIF4A.


Subject(s)
Apoptosis Regulatory Proteins/chemistry , Apoptosis Regulatory Proteins/metabolism , DEAD-box RNA Helicases/chemistry , DEAD-box RNA Helicases/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Crystallography, X-Ray , DEAD-box RNA Helicases/genetics , Humans , Models, Molecular , Mutation/genetics , Protein Binding , Protein Structure, Quaternary , RNA-Binding Proteins/genetics
15.
Food Sci Biotechnol ; 30(7): 971-977, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34395028

ABSTRACT

Biogenic amines (BAs) produced by the action of bacterial amino acid decarboxylases in fermented foods cause various health problems in human. Despite the importance, detailed characterizations of the BA-producing decarboxylases are relatively less progressed than the studies on BA-producing bacteria, due to the time-consuming chromatography-based assay method. In this study, a simple and general colorimetric assay for aromatic amino acid decarboxylases coupled with an amine oxidase from Arthrobacter aurescens (AMAO) and horseradish peroxidase was developed using a tyrosine decarboxylase from Enterococcus faecium DSM20477 (EfmTDC) as a model enzyme. The activity profiles over pH and temperature and the kinetic analysis for EfmTDC revealed that the results by the colorimetric assay are compatible with those by the chromatographic assay. In addition, due to the broad substrate specificity of AMAO for histamine and 2-phenylethylamine, the colorimetric assay would be applicable to the characterization of other aromatic amino acid decarboxylases including histidine decarboxylases. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10068-021-00938-4.

16.
Int J Biol Macromol ; 168: 403-411, 2021 Jan 31.
Article in English | MEDLINE | ID: mdl-33321136

ABSTRACT

We identified three novel microbial esterase (Est1, Est2, and Est3) from Sphingobium chungbukense DJ77. Multiple sequence alignment showed the Est1 and Est3 have distinct motifs, such as tetrapeptide motif HGGG, a pentapeptide sequence motif GXSXG, and catalytic triad residues Ser-Asp-His, indicating that the identified enzymes belong to family IV esterases. Interestingly, Est1 exhibited strong activity toward classical esterase substrates, p-nitrophenyl ester of short-chain fatty acids and long-chain. However, Est3 did not exhibit any activity despite having high sequence similarity and sharing the identical catalytic active residues with Est1. Est3 only showed hydrolytic degradation activity to polycaprolactone (PCL). MOE-docking prediction also provided the parameters consisting of binding energy, molecular docking score, and molecular distance between substrate and catalytic nucleophilic residue, serine. The engineered mutEst3 has hydrolytic activity for a variety of esters ranging from p-nitrophenyl esters to PCL. In the present study, we demonstrated that MOE-docking simulation provides a valuable insight for facilitating biocatalytic performance.


Subject(s)
Cloning, Molecular/methods , Esterases/chemistry , Esterases/metabolism , Polyesters/chemistry , Sphingomonadaceae/enzymology , Amino Acid Motifs , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biocatalysis , Catalytic Domain , Esterases/genetics , Hydrogen-Ion Concentration , Hydrolysis , Molecular Docking Simulation , Sequence Alignment , Sphingomonadaceae/chemistry , Sphingomonadaceae/genetics , Substrate Specificity
17.
Biochem Biophys Res Commun ; 391(3): 1506-11, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-20035725

ABSTRACT

Bacterial histidine kinases (HKs) play a critical role in signal transduction for cellular adaptation to environmental conditions and stresses. YbdK from Bacillus subtilis is a 320-residue intra-membrane sensing HK characterized by a short input domain consisting of two transmembrane helices without an extracytoplasmic domain. While the cytoplasmic domains of HKs have been studied in detail, the intra-membrane sensing domain systems are still uncharacterized due to difficulties in handling the transmembrane domain. Here, we successfully obtained pure recombinant transmembrane domain of YbdK (YbdK-TM) from E. coli and analyzed the characteristics of YbdK-TM using nuclear magnetic resonance (NMR) and other biophysical methods. YbdK-TM was found to form homo-dimers in DPC micelles based on cross-linking assays and analytical ultracentrifugation analyses. We estimated the size of the YbdK-TM DPC complex to be 46kDa using solution state NMR T(1)/T(2) relaxation analyses in DPC micelles. These results provide information that will allow functional and structural studies of intra-membrane sensing HKs to begin.


Subject(s)
Bacillus subtilis/enzymology , Cell Membrane/enzymology , Protein Kinases/chemistry , Bacillus subtilis/genetics , Histidine Kinase , Micelles , Nuclear Magnetic Resonance, Biomolecular , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/chemistry , Protein Kinases/genetics , Protein Structure, Tertiary
18.
Biol Pharm Bull ; 33(9): 1579-88, 2010.
Article in English | MEDLINE | ID: mdl-20823578

ABSTRACT

This study describes an efficient approach for developing sequence tagged sites (STS) for Panax ginseng C.A. MEYER, and their applications for line discrimination. By using the methylation filtering (MF) technique, a genomic library was constructed, in which clone inserts were derived from the hypomethylated regions of ginseng genome. A methylation unfiltered genomic library was also constructed and the clone inserts were compared to those from the MF library in terms of sequence characteristics. Sequence analysis revealed that MF efficiently enriched the protein coding region of P. ginseng, for which the repetitive DNA appeared to be as little as 2.5 fold lower than clones in the unfiltered library, and also indicated that the P. ginseng genome may contain a large fraction of methylated repetitive DNA elements. A total of 99 and 100 highly stringent STS primer sets were designed from the filtered and unfiltered library, respectively. Amplification products were tested for latent polymorphism across six cultivars of P. ginseng and other 2 Panax species using six endonucleases recognizing four-bases. STS primer sets described here will be useful for marker-assisted selection, genome mapping and line discrimination of P. ginseng or its cultivars from other Panax species.


Subject(s)
Gene Library , Genome, Plant/genetics , Panax/genetics , Plant Extracts/genetics , Sequence Tagged Sites , Korea , Plant Extracts/isolation & purification , Plant Leaves/genetics , Seeds/genetics
19.
J Ginseng Res ; 44(4): 637-643, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32617044

ABSTRACT

BACKGROUND: Ginseng (Panax ginseng Meyer) is one of the world's most valuable medicinal plants with numerous pharmacological effects. Ginseng has been cultivated from wild mountain ginseng collections for a few hundred years. However, the genetic diversity of cultivated and wild ginseng populations is not fully understood. METHODS: We developed 92 polymorphic microsatellite markers based on whole-genome sequence data. We selected five markers that represent clear allele diversity for each of their corresponding loci to elucidate genetic diversity. These markers were applied to 147 individual plants, including cultivars, breeding lines, and wild populations in Korea and neighboring countries. RESULTS: Most of the 92 markers displayed multiple-band patterns, resulting from genome duplication, which causes confusion in interpretation of their target locus. The five high-resolution markers revealed 3 to 8 alleles from each single locus. The proportion of heterozygosity (He) ranged from 0.027 to 0.190, with an average of 0.132, which is notably lower than that of previous studies. Polymorphism information content of the markers ranged from 0.199 to 0.701, with an average of 0.454. There was no statistically significant difference in genetic diversity between cultivated and wild ginseng groups, and they showed intermingled positioning in the phylogenetic relationship. CONCLUSION: Ginseng has a relatively high level of genetic diversity, and cultivated and wild groups have similar levels of genetic diversity. Collectively, our data demonstrate that current breeding populations have abundant genetic diversity for breeding of elite ginseng cultivars.

20.
Biomolecules ; 9(9)2019 08 28.
Article in English | MEDLINE | ID: mdl-31466413

ABSTRACT

The commercial use of Panax ginseng berries is increasing as P. ginseng berries are known to contain large amounts of ginsenosides, and many pharmacological activities have been reported for the various ginsenosides. For the proper use of P.ginseng berries, it is necessary to study efficient and accurate quality control and the profiling of the overall composition of each cultivar. Ginseng berry samples from seven cultivars (Eumseung, Chung-buk Province, Republic of Korea) were analyzed using ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-QTOF/MS) for profiling of the ginsenosides, and high-resolution magic-angle-spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy for profiling of the primary metabolites. Comparing twenty-six ginsenoside profiles between the variant representatives and between the violet-stem variant, Kumpoong and Sunwon were classified. In the case of primary metabolites, the cultivars Kumpoong and Gopoong were classified. As a result of correlation analyses of the primary and secondary metabolites, in the Gopoong cultivar, the metabolism was found to lean toward energy metabolism rather than ginsenoside synthesis, and accumulation of osmolytes was low. The Gopoong cultivar had higher levels of most of the amino acids, such as arginine, phenylalanine, isoleucine, threonine, and valine, and it contained the highest level of choline and the lowest level of myo-inositol. Except for these, there were no significant differences of primary metabolites. In the Kumpoong cultivar, the protopanaxatriol (PPT)-type ginsenosides, ginsenoside Re and ginsenoside Rg2, were much lower than in the other cultivars, while the other PPT-type ginsenosides were inversely found in much higher amounts than in other cultivars. The Sunwon cultivar showed that variations of PPT-type ginsenosides were significantly different between samples. However, the median values of PPT-type ginsenosides of Sunwon showed similar levels to those of Kumpoong. The difference in primary metabolites used for metabolism for survival was found to be small in our results. Our data demonstrated the characteristics of each cultivar using profiling data of the primary and secondary metabolites, especially for Gopoong, Kumpoong, and Sunwon. These profiling data provided important information for further research and commercial use.


Subject(s)
Chromatography, High Pressure Liquid/methods , Fruit/chemistry , Magnetic Resonance Spectroscopy/methods , Mass Spectrometry/methods , Panax/chemistry , Ginsenosides/analysis
SELECTION OF CITATIONS
SEARCH DETAIL