Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Proc Natl Acad Sci U S A ; 109(17): 6543-8, 2012 Apr 24.
Article in English | MEDLINE | ID: mdl-22493227

ABSTRACT

HIV-1 protease is an important target for the treatment of HIV/AIDS. However, drug resistance is a persistent problem and new inhibitors are needed. An approach toward understanding enzyme chemistry, the basis of drug resistance, and the design of powerful inhibitors is to establish the structure of enzymatic transition states. Enzymatic transition structures can be established by matching experimental kinetic isotope effects (KIEs) with theoretical predictions. However, the HIV-1 protease transition state has not been previously resolved using these methods. We have measured primary (14)C and (15)N KIEs and secondary (3)H and (18)O KIEs for native and multidrug-resistant HIV-1 protease (I84V). We observed (14)C KIEs ((14)V/K) of 1.029 ± 0.003 and 1.025 ± 0.005, (15)N KIEs ((15)V/K) of 0.987 ± 0.004 and 0.989 ± 0.003, (18)O KIEs ((18)V/K) of 0.999 ± 0.003 and 0.993 ± 0.003, and (3)H KIEs ((3)V/K) KIEs of 0.968 ± 0.001 and 0.976 ± 0.001 for the native and I84V enzyme, respectively. The chemical reaction involves nucleophilic water attack at the carbonyl carbon, proton transfer to the amide nitrogen leaving group, and C-N bond cleavage. A transition structure consistent with the KIE values involves proton transfer from the active site Asp-125 (1.32 Å) with partial hydrogen bond formation to the accepting nitrogen (1.20 Å) and partial bond loss from the carbonyl carbon to the amide leaving group (1.52 Å). The KIEs measured for the native and I84V enzyme indicate nearly identical transition states, implying that a true transition-state analogue should be effective against both enzymes.


Subject(s)
HIV Protease/metabolism , Drug Resistance, Multiple , Drug Resistance, Viral , HIV Protease/chemistry , HIV-1/drug effects , Hydrogen Bonding , Kinetics , Models, Molecular , Protein Conformation , Protons
2.
Biochemistry ; 52(39): 6866-78, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-24000826

ABSTRACT

Protein lysine methyltransferases (PKMTs) are key players in epigenetic regulation and have been associated with a variety of diseases, including cancers. The catalytic subunit of Polycomb Repressive Complex 2, EZH2 (EC 2.1.1.43), is a PKMT and a member of a family of SET domain lysine methyltransferases that catalyze the transfer of a methyl group from S-adenosyl-l-methionine to lysine 27 of histone 3 (H3K27). Wild-type (WT) EZH2 primarily catalyzes the mono- and dimethylation of H3K27; however, a clinically relevant active site mutation (Y641F) has been shown to alter the reaction specificity, dominantly catalyzing trimethylation of H3K27, and has been linked to tumor genesis and maintenance. Herein, we explore the chemical mechanism of methyl transfer by EZH2 and its Y641F mutant with pH-rate profiles and solvent kinetic isotope effects (sKIEs) using a short peptide derived from histone H3 [H3(21-44)]. A key component of the chemical reaction is the essential deprotonation of the ε-NH3(+) group of lysine to accommodate subsequent methylation. This deprotonation has been suggested by independent studies (1) to occur prior to binding to the enzyme (by bulk solvent) or (2) to be facilitated within the active site following binding, either (a) by the enzyme itself or (b) by a water molecule with access to the binding pocket. Our pH-rate and sKIE data best support a model in which lysine deprotonation is enzyme-dependent and at least partially rate-limiting. Furthermore, our experimental data are in agreement with prior computational models involving enzyme-dependent solvent deprotonation through a channel providing bulk solvent access to the active site. The mechanism of deprotonation and the rate-limiting catalytic steps appear to be unchanged between the WT and Y641F mutant enzymes, despite their activities being highly dependent on different substrate methylation states, suggesting determinants of substrate and product specificity in EZH2 are independent of catalytic events limiting the steady-state rate.


Subject(s)
Lysine/metabolism , Polycomb Repressive Complex 2/metabolism , Protons , Biocatalysis , Hydrogen-Ion Concentration , Lysine/chemistry , Models, Molecular , Molecular Structure , Mutation , Polycomb Repressive Complex 2/chemistry , Polycomb Repressive Complex 2/genetics
3.
J Med Chem ; 66(19): 13384-13399, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37774359

ABSTRACT

Protein tyrosine phosphatase SHP2 mediates RAS-driven MAPK signaling and has emerged in recent years as a target of interest in oncology, both for treating with a single agent and in combination with a KRAS inhibitor. We were drawn to the pharmacological potential of SHP2 inhibition, especially following the initial observation that drug-like compounds could bind an allosteric site and enforce a closed, inactive state of the enzyme. Here, we describe the identification and characterization of GDC-1971 (formerly RLY-1971), a SHP2 inhibitor currently in clinical trials in combination with KRAS G12C inhibitor divarasib (GDC-6036) for the treatment of solid tumors driven by a KRAS G12C mutation.

4.
Biochemistry ; 51(34): 6715-7, 2012 Aug 28.
Article in English | MEDLINE | ID: mdl-22870934

ABSTRACT

The transition state for the Trypanosoma cruzi uridine phosphorylase (TcUP) reaction has an expanded S(N)2 character. We used binding isotope effects (BIE's) to probe uridine distortion in the complex with TcUP and sulfate to mimic the Michaelis complex. Inverse 1'-(3)H and 5'-(3)H BIE's indicate a constrained bonding environment of these groups in the complex. Quantum chemical modeling identified a uridine conformer whose calculated BIE's match the experimental values. This conformer differs in sugar pucker and uracil orientation from the unbound conformer and the transition-state structure. These results support ground-state stabilization in the Michaelis complex.


Subject(s)
Protozoan Proteins/chemistry , Trypanosoma cruzi/enzymology , Uridine Phosphorylase/chemistry , Carbon Radioisotopes/chemistry , Carbon Radioisotopes/metabolism , Isotope Labeling , Kinetics , Models, Chemical , Protein Binding , Protozoan Proteins/metabolism , Tritium/chemistry , Tritium/metabolism , Trypanosoma cruzi/chemistry , Uridine/chemistry , Uridine/metabolism , Uridine Phosphorylase/metabolism
5.
J Am Chem Soc ; 133(48): 19358-61, 2011 Dec 07.
Article in English | MEDLINE | ID: mdl-22059645

ABSTRACT

Protein motions that occur on the microsecond to millisecond time scale have been linked to enzymatic rates observed for catalytic turnovers, but not to transition-state barrier crossing. It has been hypothesized that enzyme motions on the femtosecond time scale of bond vibrations play a role in transition state formation. Here, we perturb femtosecond motion by substituting all nonexchangeable carbon, nitrogen, and hydrogen atoms with (13)C, (15)N, and (2)H and observe the catalytic effects in HIV-1 protease. According to the Born-Oppenheimer approximation, isotopic substitution alters vibrational frequency with unchanged electrostatic properties. With the use of a fluorescent peptide to report on multiple steps in the reaction, we observe significantly reduced rates in the heavy enzyme relative to the light enzyme. A possible interpretation of our results is that there exists a dynamic link between mass-dependent bond vibrations of the enzyme and events in the reaction coordinate.


Subject(s)
HIV Protease/metabolism , HIV-1/enzymology , Molecular Dynamics Simulation , Circular Dichroism , HIV Infections/enzymology , HIV Infections/virology , HIV Protease/chemistry , Kinetics
6.
Science ; 351(6278): 1208-13, 2016 Mar 11.
Article in English | MEDLINE | ID: mdl-26912361

ABSTRACT

5-Methylthioadenosine phosphorylase (MTAP) is a key enzyme in the methionine salvage pathway. The MTAP gene is frequently deleted in human cancers because of its chromosomal proximity to the tumor suppressor gene CDKN2A. By interrogating data from a large-scale short hairpin RNA-mediated screen across 390 cancer cell line models, we found that the viability of MTAP-deficient cancer cells is impaired by depletion of the protein arginine methyltransferase PRMT5. MTAP-deleted cells accumulate the metabolite methylthioadenosine (MTA), which we found to inhibit PRMT5 methyltransferase activity. Deletion of MTAP in MTAP-proficient cells rendered them sensitive to PRMT5 depletion. Conversely, reconstitution of MTAP in an MTAP-deficient cell line rescued PRMT5 dependence. Thus, MTA accumulation in MTAP-deleted cancers creates a hypomorphic PRMT5 state that is selectively sensitized toward further PRMT5 inhibition. Inhibitors of PRMT5 that leverage this dysregulated metabolic state merit further investigation as a potential therapy for MTAP/CDKN2A-deleted tumors.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p16/metabolism , Methionine/metabolism , Neoplasms/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Purine-Nucleoside Phosphorylase/metabolism , Cell Line, Tumor , Cell Survival , Cyclin-Dependent Kinase Inhibitor p16/genetics , Deoxyadenosines/metabolism , Gene Deletion , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Protein-Arginine N-Methyltransferases/genetics , Purine-Nucleoside Phosphorylase/genetics , RNA, Small Interfering/genetics , Thionucleosides/metabolism
7.
Chem Biol ; 22(1): 87-97, 2015 Jan 22.
Article in English | MEDLINE | ID: mdl-25544045

ABSTRACT

The highly conserved 70 kDa heat shock proteins (Hsp70) play an integral role in proteostasis such that dysregulation has been implicated in numerous diseases. Elucidating the precise role of Hsp70 family members in the cellular context, however, has been hampered by the redundancy and intricate regulation of the chaperone network, and relatively few selective and potent tools. We have characterized a natural product, novolactone, that targets cytosolic and ER-localized isoforms of Hsp70 through a highly conserved covalent interaction at the interface between the substrate-binding and ATPase domains. Biochemical and structural analyses indicate that novolactone disrupts interdomain communication by allosterically inducing a conformational change in the Hsp70 protein to block ATP-induced substrate release and inhibit refolding activities. Thus, novolactone is a valuable tool for exploring the requirements of Hsp70 chaperones in diverse cellular contexts.


Subject(s)
Abietanes/metabolism , Biological Products/metabolism , HSP70 Heat-Shock Proteins/metabolism , Abietanes/chemistry , Adenosine Triphosphatases/metabolism , Allosteric Regulation , Binding Sites , Biological Products/chemistry , Cell Line , Crystallography, X-Ray , Endoplasmic Reticulum/metabolism , Genome, Fungal , HSP40 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/chemistry , Humans , Molecular Dynamics Simulation , Protein Binding , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Protein Structure, Tertiary , Saccharomyces cerevisiae/genetics , Substrate Specificity
8.
J Biol Chem ; 283(2): 784-91, 2008 Jan 11.
Article in English | MEDLINE | ID: mdl-17993648

ABSTRACT

Expression of the human beta-amyloid peptide (Abeta) in a transgenic Caenorhabditis elegans Alzheimer disease model leads to the induction of HSP-16 proteins, a family of small heat shock-inducible proteins homologous to vertebrate alphaB crystallin. These proteins also co-localize and co-immunoprecipitate with Abeta in this model (Fonte, V., Kapulkin, V., Taft, A., Fluet, A., Friedman, D., and Link, C. D. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 9439-9444). To investigate the molecular basis and biological function of this interaction between HSP-16 and Abeta, we generated transgenic C. elegans animals with high level, constitutive expression of HSP-16.2. We find that constitutive expression of wild type, but not mutant, HSP-16.2 partially suppresses Abeta toxicity. Wild type Abeta-(1-42), but not Abeta single chain dimer, was observed to become sequestered in HSP-16.2-containing inclusions, indicating a conformation-dependent interaction between HSP-16.2 and Abeta in vivo. Constitutive expression of HSP-16.2 could reduce amyloid fibril formation, but it did not reduce the overall accumulation of Abeta peptide or alter the pattern of the predominant oligomeric species. Studies with recombinant HSP-16.2 demonstrated that HSP-16.2 can bind directly to Abeta in vitro, with a preferential affinity for oligomeric Abeta species. This interaction between Abeta and HSP-16.2 also influences the formation of Abeta oligomers in in vitro assays. These studies are consistent with a model in which small chaperone proteins reduce Abeta toxicity by interacting directly with the Abeta peptide and altering its oligomerization pathways, thereby reducing the formation of a minor toxic species.


Subject(s)
Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/toxicity , Animals, Genetically Modified , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Heat-Shock Proteins, Small/genetics , Heat-Shock Proteins/genetics , Alzheimer Disease/genetics , Amino Acid Sequence , Amyloid beta-Peptides/antagonists & inhibitors , Animals , Conserved Sequence , Disease Models, Animal , Humans , Intracellular Signaling Peptides and Proteins , Molecular Sequence Data , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL