Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Cell ; 186(9): 1950-1967.e25, 2023 04 27.
Article in English | MEDLINE | ID: mdl-36996814

ABSTRACT

Little is known about the critical metabolic changes that neural cells have to undergo during development and how temporary shifts in this program can influence brain circuitries and behavior. Inspired by the discovery that mutations in SLC7A5, a transporter of metabolically essential large neutral amino acids (LNAAs), lead to autism, we employed metabolomic profiling to study the metabolic states of the cerebral cortex across different developmental stages. We found that the forebrain undergoes significant metabolic remodeling throughout development, with certain groups of metabolites showing stage-specific changes, but what are the consequences of perturbing this metabolic program? By manipulating Slc7a5 expression in neural cells, we found that the metabolism of LNAAs and lipids are interconnected in the cortex. Deletion of Slc7a5 in neurons affects the postnatal metabolic state, leading to a shift in lipid metabolism. Additionally, it causes stage- and cell-type-specific alterations in neuronal activity patterns, resulting in a long-term circuit dysfunction.


Subject(s)
Amino Acids, Neutral , Large Neutral Amino Acid-Transporter 1 , Female , Humans , Pregnancy , Amino Acids, Neutral/genetics , Amino Acids, Neutral/metabolism , Brain/metabolism , Large Neutral Amino Acid-Transporter 1/genetics , Large Neutral Amino Acid-Transporter 1/metabolism , Mutation , Neurons/metabolism , Animals , Mice
2.
Genes (Basel) ; 12(11)2021 10 30.
Article in English | MEDLINE | ID: mdl-34828352

ABSTRACT

Mutations affecting mTOR or RAS signaling underlie defined syndromes (the so-called mTORopathies and RASopathies) with high risk for Autism Spectrum Disorder (ASD). These syndromes show a broad variety of somatic phenotypes including cancers, skin abnormalities, heart disease and facial dysmorphisms. Less well studied are the neuropsychiatric symptoms such as ASD. Here, we assess the relevance of these signalopathies in ASD reviewing genetic, human cell model, rodent studies and clinical trials. We conclude that signalopathies have an increased liability for ASD and that, in particular, ASD individuals with dysmorphic features and intellectual disability (ID) have a higher chance for disruptive mutations in RAS- and mTOR-related genes. Studies on rodent and human cell models confirm aberrant neuronal development as the underlying pathology. Human studies further suggest that multiple hits are necessary to induce the respective phenotypes. Recent clinical trials do only report improvements for comorbid conditions such as epilepsy or cancer but not for behavioral aspects. Animal models show that treatment during early development can rescue behavioral phenotypes. Taken together, we suggest investigating the differential roles of mTOR and RAS signaling in both human and rodent models, and to test drug treatment both during and after neuronal development in the available model systems.


Subject(s)
Autism Spectrum Disorder/pathology , Gene Regulatory Networks , Signal Transduction , Animals , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Disease Models, Animal , Gene Expression Regulation , Humans , Mutation , TOR Serine-Threonine Kinases/metabolism , ras Proteins/metabolism
3.
Nat Commun ; 12(1): 3058, 2021 05 24.
Article in English | MEDLINE | ID: mdl-34031387

ABSTRACT

De novo loss of function mutations in the ubiquitin ligase-encoding gene Cullin3 (CUL3) lead to autism spectrum disorder (ASD). In mouse, constitutive Cul3 haploinsufficiency leads to motor coordination deficits as well as ASD-relevant social and cognitive impairments. However, induction of Cul3 haploinsufficiency later in life does not lead to ASD-relevant behaviors, pointing to an important role of Cul3 during a critical developmental window. Here we show that Cul3 is essential to regulate neuronal migration and, therefore, constitutive Cul3 heterozygous mutant mice display cortical lamination abnormalities. At the molecular level, we found that Cul3 controls neuronal migration by tightly regulating the amount of Plastin3 (Pls3), a previously unrecognized player of neural migration. Furthermore, we found that Pls3 cell-autonomously regulates cell migration by regulating actin cytoskeleton organization, and its levels are inversely proportional to neural migration speed. Finally, we provide evidence that cellular phenotypes associated with autism-linked gene haploinsufficiency can be rescued by transcriptional activation of the intact allele in vitro, offering a proof of concept for a potential therapeutic approach for ASDs.


Subject(s)
Brain/metabolism , Cell Movement/physiology , Cullin Proteins/genetics , Cullin Proteins/metabolism , Cytoskeleton/metabolism , Proteostasis , Animals , Autism Spectrum Disorder/genetics , Autistic Disorder/genetics , Brain/pathology , Female , Genes, Regulator , Haploinsufficiency , Heterozygote , Homeostasis , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microtubules/metabolism , Mutation , Nervous System , Prosencephalon , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL