Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(15): e2317274121, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38579010

ABSTRACT

Here, we describe the identification of an antibiotic class acting via LpxH, a clinically unexploited target in lipopolysaccharide synthesis. The lipopolysaccharide synthesis pathway is essential in most Gram-negative bacteria and there is no analogous pathway in humans. Based on a series of phenotypic screens, we identified a hit targeting this pathway that had activity on efflux-defective strains of Escherichia coli. We recognized common structural elements between this hit and a previously published inhibitor, also with activity against efflux-deficient bacteria. With the help of X-ray structures, this information was used to design inhibitors with activity on efflux-proficient, wild-type strains. Optimization of properties such as solubility, metabolic stability and serum protein binding resulted in compounds having potent in vivo efficacy against bloodstream infections caused by the critical Gram-negative pathogens E. coli and Klebsiella pneumoniae. Other favorable properties of the series include a lack of pre-existing resistance in clinical isolates, and no loss of activity against strains expressing extended-spectrum-ß-lactamase, metallo-ß-lactamase, or carbapenemase-resistance genes. Further development of this class of antibiotics could make an important contribution to the ongoing struggle against antibiotic resistance.


Subject(s)
Anti-Bacterial Agents , Lipopolysaccharides , Humans , Anti-Bacterial Agents/chemistry , Escherichia coli/metabolism , Gram-Negative Bacteria/metabolism , beta-Lactamases/genetics , Microbial Sensitivity Tests
2.
Org Lett ; 9(2): 303-5, 2007 Jan 18.
Article in English | MEDLINE | ID: mdl-17217290

ABSTRACT

A three-component one-pot procedure (3-MC) was developed to assemble 3-indolepropionic acids from commercially available materials. This new methodology affords the title compounds in high yields and without the use of chromatography. [reaction: see text].


Subject(s)
Indoles/chemical synthesis , Propionates/chemical synthesis , Indoles/chemistry , Indoles/isolation & purification , Molecular Structure , Propionates/chemistry , Propionates/isolation & purification , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL