Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 451
Filter
Add more filters

Publication year range
1.
Ann Neurol ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888212

ABSTRACT

OBJECTIVE: We compared the accuracy of amyloid and [18F]Flortaucipir (FTP) tau positron emission tomography (PET) visual reads for distinguishing patients with mild cognitive impairment (MCI) or dementia with fluid biomarker support of Alzheimer's disease (AD). METHODS: Participants with FTP-PET, amyloid-PET, and diagnosis of dementia-AD (n = 102), MCI-AD (n = 41), non-AD diseases (n = 76), and controls (n = 20) were included. AD status was determined independent of PET by cerebrospinal fluid or plasma biomarkers. The mean age was 66.9 years, and 44.8% were women. Three readers interpreted scans blindly and independently. Amyloid-PET was classified as positive/negative using tracer-specific criteria. FTP-PET was classified as positive with medial temporal lobe (MTL) binding as the minimum uptake indicating AD tau (tau-MTL+), positive with posterolateral temporal or extratemporal cortical binding in an AD-like pattern (tau-CTX+), or negative. The majority of scan interpretations were used to calculate diagnostic accuracy of visual reads in detecting MCI/dementia with fluid biomarker support for AD (MCI/dementia-AD). RESULTS: Sensitivity of amyloid-PET for MCI/dementia-AD was 95.8% (95% confidence interval 91.1-98.4%), which was comparable to tau-CTX+ 92.3% (86.7-96.1%, p = 0.67) and tau-MTL+ 97.2% (93.0-99.2%, p = 0.27). Specificity of amyloid-PET for biomarker-negative healthy and disease controls was 84.4% (75.5-91.0%), which was like tau-CTX+ 88.5% (80.4-94.1%, p = 0.34), and trended toward being higher than tau-MTL+ 75.0% (65.1-83.3%, p = 0.08). Tau-CTX+ had higher specificity than tau-MTL+ (p = 0.0002), but sensitivity was lower (p = 0.02), driven by decreased sensitivity for MCI-AD (80.5% [65.1-91.2] vs. 95.1% [83.5-99.4], p = 0.03). INTERPRETATION: Amyloid- and tau-PET visual reads have similar sensitivity/specificity for detecting AD in cognitively impaired patients. Visual tau-PET interpretations requiring cortical binding outside MTL increase specificity, but lower sensitivity for MCI-AD. ANN NEUROL 2024.

2.
Brain ; 147(4): 1511-1525, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-37988272

ABSTRACT

It is debated whether primary progressive apraxia of speech (PPAOS) and progressive agrammatic aphasia (PAA) belong to the same clinical spectrum, traditionally termed non-fluent/agrammatic variant primary progressive aphasia (nfvPPA), or exist as two completely distinct syndromic entities with specific pathologic/prognostic correlates. We analysed speech, language and disease severity features in a comprehensive cohort of patients with progressive motor speech impairment and/or agrammatism to ascertain evidence of naturally occurring, clinically meaningful non-overlapping syndromic entities (e.g. PPAOS and PAA) in our data. We also assessed if data-driven latent clinical dimensions with aetiologic/prognostic value could be identified. We included 98 participants, 43 of whom had an autopsy-confirmed neuropathological diagnosis. Speech pathologists assessed motor speech features indicative of dysarthria and apraxia of speech (AOS). Quantitative expressive/receptive agrammatism measures were obtained and compared with healthy controls. Baseline and longitudinal disease severity was evaluated using the Clinical Dementia Rating Sum of Boxes (CDR-SB). We investigated the data's clustering tendency and cluster stability to form robust symptom clusters and employed principal component analysis to extract data-driven latent clinical dimensions (LCD). The longitudinal CDR-SB change was estimated using linear mixed-effects models. Of the participants included in this study, 93 conformed to previously reported clinical profiles (75 with AOS and agrammatism, 12 PPAOS and six PAA). The remaining five participants were characterized by non-fluent speech, executive dysfunction and dysarthria without apraxia of speech or frank agrammatism. No baseline clinical features differentiated between frontotemporal lobar degeneration neuropathological subgroups. The Hopkins statistic demonstrated a low cluster tendency in the entire sample (0.45 with values near 0.5 indicating random data). Cluster stability analyses showed that only two robust subgroups (differing in agrammatism, executive dysfunction and overall disease severity) could be identified. Three data-driven components accounted for 71% of the variance [(i) severity-agrammatism; (ii) prominent AOS; and (iii) prominent dysarthria]. None of these data-driven LCDs allowed an accurate prediction of neuropathology. The severity-agrammatism component was an independent predictor of a faster CDR-SB increase in all the participants. Higher dysarthria severity, reduced words per minute and expressive and receptive agrammatism severity at baseline independently predicted accelerated disease progression. Our findings indicate that PPAOS and PAA, rather than exist as completely distinct syndromic entities, constitute a clinical continuum. In our cohort, splitting the nfvPPA spectrum into separate clinical phenotypes did not improve clinical-pathological correlations, stressing the need for new biological markers and consensus regarding updated terminology and clinical classification.


Subject(s)
Aphasia, Primary Progressive , Apraxias , Primary Progressive Nonfluent Aphasia , Humans , Aphasia, Broca/pathology , Dysarthria , Apraxias/pathology , Language , Speech
3.
Brain ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940350

ABSTRACT

In frontotemporal lobar degeneration (FTLD), pathological protein aggregation in specific brain regions is associated with declines in human-specialized social-emotional and language functions. In most patients, disease protein aggregates contain either TDP-43 (FTLD-TDP) or tau (FTLD-tau). Here, we explored whether FTLD-associated regional degeneration patterns relate to regional gene expression of human accelerated regions (HARs), conserved sequences that have undergone positive selection during recent human evolution. To this end, we used structural neuroimaging from patients with FTLD and human brain regional transcriptomic data from controls to identify genes expressed in FTLD-targeted brain regions. We then integrated primate comparative genomic data to test our hypothesis that FTLD targets brain regions linked to expression levels of recently evolved genes. In addition, we asked whether genes whose expression correlates with FTLD atrophy are enriched for genes that undergo cryptic splicing when TDP-43 function is impaired. We found that FTLD-TDP and FTLD-tau subtypes target brain regions with overlapping and distinct gene expression correlates, highlighting many genes linked to neuromodulatory functions. FTLD atrophy-correlated genes were strongly enriched for HARs. Atrophy-correlated genes in FTLD-TDP showed greater overlap with TDP-43 cryptic splicing genes and genes with more numerous TDP-43 binding sites compared with atrophy-correlated genes in FTLD-tau. Cryptic splicing genes were enriched for HAR genes, and vice versa, but this effect was due to the confounding influence of gene length. Analyses performed at the individual-patient level revealed that the expression of HAR genes and cryptically spliced genes within putative regions of disease onset differed across FTLD-TDP subtypes.

4.
Proc Natl Acad Sci U S A ; 119(49): e2207181119, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36459652

ABSTRACT

Aging is characterized by a progressive loss of brain volume at an estimated rate of 5% per decade after age 40. While these morphometric changes, especially those affecting gray matter and atrophy of the temporal lobe, are predictors of cognitive performance, the strong association with aging obscures the potential parallel, but more specific role, of individual subject physiology. Here, we studied a cohort of 554 human subjects who were monitored using structural MRI scans and blood immune protein concentrations. Using machine learning, we derived a cytokine clock (CyClo), which predicted age with good accuracy (Mean Absolute Error = 6 y) based on the expression of a subset of immune proteins. These proteins included, among others, Placenta Growth Factor (PLGF) and Vascular Endothelial Growth Factor (VEGF), both involved in angiogenesis, the chemoattractant vascular cell adhesion molecule 1 (VCAM-1), the canonical inflammatory proteins interleukin-6 (IL-6) and tumor necrosis factor alpha (TNFα), the chemoattractant IP-10 (CXCL10), and eotaxin-1 (CCL11), previously involved in brain disorders. Age, sex, and the CyClo were independently associated with different functionally defined cortical networks in the brain. While age was mostly correlated with changes in the somatomotor system, sex was associated with variability in the frontoparietal, ventral attention, and visual networks. Significant canonical correlation was observed for the CyClo and the default mode, limbic, and dorsal attention networks, indicating that immune circulating proteins preferentially affect brain processes such as focused attention, emotion, memory, response to social stress, internal evaluation, and access to consciousness. Thus, we identified immune biomarkers of brain aging which could be potential therapeutic targets for the prevention of age-related cognitive decline.


Subject(s)
Brain , Vascular Endothelial Growth Factor A , Humans , Adult , Atrophy , Brain/diagnostic imaging , Aging , Research Personnel , Cytokines
5.
J Neurosci ; 43(2): 333-345, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36446586

ABSTRACT

Hexanucleotide repeat expansion (HRE) within C9orf72 is the most common genetic cause of frontotemporal dementia (FTD). Thalamic atrophy occurs in both sporadic and familial FTD but is thought to distinctly affect HRE carriers. Separately, emerging evidence suggests widespread derepression of transposable elements (TEs) in the brain in several neurodegenerative diseases, including C9orf72 HRE-mediated FTD (C9-FTD). Whether TE activation can be measured in peripheral blood and how the reduction in peripheral C9orf72 expression observed in HRE carriers relates to atrophy and clinical impairment remain unknown. We used FreeSurfer software to assess the effects of C9orf72 HRE and clinical diagnosis (n = 78 individuals, male and female) on atrophy of thalamic nuclei. We also generated a novel, human, whole-blood RNA-sequencing dataset to determine the relationships among peripheral C9orf72 expression, TE activation, thalamic atrophy, and clinical severity (n = 114 individuals, male and female). We confirmed global thalamic atrophy and reduced C9orf72 expression in HRE carriers. Moreover, we identified disproportionate atrophy of the right mediodorsal lateral nucleus in HRE carriers and showed that C9orf72 expression associated with clinical severity, independent of thalamic atrophy. Strikingly, we found global peripheral activation of TEs, including the human endogenous LINE-1 element L1HS L1HS levels were associated with atrophy of multiple pulvinar nuclei, a thalamic region implicated in C9-FTD. Integration of peripheral transcriptomic and neuroimaging data from human HRE carriers revealed atrophy of specific thalamic nuclei, demonstrated that C9orf72 levels relate to clinical severity, and identified marked derepression of TEs, including L1HS, which predicted atrophy of FTD-relevant thalamic nuclei.SIGNIFICANCE STATEMENT Pathogenic repeat expansion in C9orf72 is the most frequent genetic cause of FTD and amyotrophic lateral sclerosis (ALS; C9-FTD/ALS). The clinical, neuroimaging, and pathologic features of C9-FTD/ALS are well characterized, whereas the intersections of transcriptomic dysregulation and brain structure remain largely unexplored. Herein, we used a novel radiogenomic approach to examine the relationship between peripheral blood transcriptomics and thalamic atrophy, a neuroimaging feature disproportionately impacted in C9-FTD/ALS. We confirmed reduction of C9orf72 in blood and found broad dysregulation of transposable elements-genetic elements typically repressed in the human genome-in symptomatic C9orf72 expansion carriers, which associated with atrophy of thalamic nuclei relevant to FTD. C9orf72 expression was also associated with clinical severity, suggesting that peripheral C9orf72 levels capture disease-relevant information.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Humans , Male , Female , Amyotrophic Lateral Sclerosis/genetics , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , C9orf72 Protein/genetics , DNA Transposable Elements , Atrophy
6.
Dement Geriatr Cogn Disord ; 53(3): 119-127, 2024.
Article in English | MEDLINE | ID: mdl-38513620

ABSTRACT

INTRODUCTION: We comprehensively evaluated how self- and informant-reported neuropsychiatric symptoms (NPS) were differentially associated with cerebral amyloid-beta (Aß) PET levels in older adults without dementia. METHODS: Two hundred and twenty-one participants (48% female, age = 73.4 years ± 8.4, Clinical Dementia Rating = 0 [n = 184] or 0.5 [n = 37]) underwent an Aß-PET scan (florbetapir or PIB), comprehensive neuropsychological testing, and self-reported (Geriatric Depression Scale - 30 item [GDS-30]) and informant-reported interview (Neuropsychiatric Inventory Questionnaire [NPI-Q]) of NPS. Cerebral Aß burden was quantified using centiloids (CL). NPI-Q and GDS-30 queried the presence of NPS within 4 subdomains and 6 subscales, respectively. Regression models examined the relationship between NPS and Aß-PET CL. RESULTS: Both higher self- and informant-reported NPS were associated with higher Aß burden. Among specific NPI-Q subdomains, informant-reported changes in depression, anxiety, and irritability were all associated with higher Aß-PET. Similarly, self-reported (GDS-30) subscales of depression, apathy, anxiety, and cognitive concern were associated with higher Aß-PET. When simultaneously entered, only self-reported cognitive concern was associated with Aß-PET in the GDS-30 model, while both informant-reported anxiety and depression were associated with Aß-PET in the NPI-Q model. Clinical status moderated the association between self-reported NPS and Aß-PET such that the positive relationship between self-perceived NPS and Aß burden strengthened with increasing functional difficulties. CONCLUSIONS: In a cohort of older adults without dementia, both self- and informant-reported measures of global NPS, particularly patient-reported cognitive concerns and informant-reported anxiety and depression, corresponded with cerebral Aß burden. NPS may appear early in the prodromal disease state and relate to initial AD proteinopathy burden, a relationship further exaggerated in those with greater clinical severity.


Subject(s)
Amyloid beta-Peptides , Depression , Neuropsychological Tests , Positron-Emission Tomography , Humans , Female , Male , Aged , Amyloid beta-Peptides/metabolism , Depression/psychology , Anxiety/psychology , Aged, 80 and over , Brain/diagnostic imaging , Brain/metabolism , Brain/pathology , Self Report , Psychiatric Status Rating Scales , Dementia/psychology
7.
Semin Neurol ; 44(2): 168-177, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38485127

ABSTRACT

Underserved and underrepresented populations have historically been excluded from neurological research. This lack of representation has implications for translation of research findings into clinical practice given the impact of social determinants of health on neurological disease risk, progression, and outcomes. Lack of inclusion in research is driven by individual-, investigator-, and study-level barriers as well as larger systemic injustices (e.g., structural racism, discriminatory practices). Although strategies to increase inclusion of underserved and underrepresented populations have been put forth, numerous questions remain about the most effective methodology. In this article, we highlight inclusivity patterns and gaps among the most common neurological conditions and propose best practices informed by our own experiences in engagement of local community organizations and collaboration efforts to increase underserved and underrepresented population participation in neurological research.


Subject(s)
Medically Underserved Area , Vulnerable Populations , Humans
8.
Alzheimers Dement ; 20(3): 1771-1783, 2024 03.
Article in English | MEDLINE | ID: mdl-38109286

ABSTRACT

INTRODUCTION: Associations of cerebellar atrophy with specific neuropathologies in Alzheimer's disease and related dementias (ADRD) have not been systematically analyzed. This study examined cerebellar gray matter volume across major pathological subtypes of ADRD. METHODS: Cerebellar gray matter volume was examined using voxel-based morphometry in 309 autopsy-proven ADRD cases and 80 healthy controls. ADRD subtypes included AD, mixed Lewy body disease and AD (LBD-AD), and frontotemporal lobar degeneration (FTLD). Clinical function was assessed using the Clinical Dementia Rating (CDR) scale. RESULTS: Distinct patterns of cerebellar atrophy were observed in all ADRD subtypes. Significant cerebellar gray matter changes appeared in the early stages of most subtypes and the very early stages of AD, LBD-AD, FTLD-TDP type A, and progressive supranuclear palsy. Cortical atrophy positively predicted cerebellar atrophy across all subtypes. DISCUSSION: Our findings establish pathology-specific profiles of cerebellar atrophy in ADRD and propose cerebellar neuroimaging as a non-invasive biomarker for differential diagnosis and disease monitoring. HIGHLIGHTS: Cerebellar atrophy was examined in 309 patients with autopsy-proven neurodegeneration. Distinct patterns of cerebellar atrophy are found in all pathological subtypes of Alzheimer's disease and related dementias (ADRD). Cerebellar atrophy is seen in early-stage (Clinical Dementia Rating [CDR] ≤1) AD, Lewy body dementia (LBD), frontotemporal lobar degeneration with tau-positive inclusion (FTLD-tau), and FTLD-transactive response DNA binding protein (FTLD-TDP). Cortical atrophy positively predicts cerebellar atrophy across all neuropathologies.


Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Lewy Body Disease , Neurodegenerative Diseases , Humans , Alzheimer Disease/pathology , Frontotemporal Lobar Degeneration/genetics , Lewy Body Disease/diagnosis , Atrophy , tau Proteins/metabolism
9.
Alzheimers Dement ; 20(1): 376-387, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37639492

ABSTRACT

INTRODUCTION: Accumulating evidence indicates disproportionate tau burden and tau-related clinical progression in females. However, sex differences in plasma phosphorylated tau (p-tau)217 prediction of subclinical cognitive and brain changes are unknown. METHODS: We measured baseline plasma p-tau217, glial fibrillary acidic protein (GFAP), and neurofilament light (NfL) in 163 participants (85 cognitively unimpaired [CU], 78 mild cognitive impairment [MCI]). In CU, linear mixed effects models examined sex differences in plasma biomarker prediction of longitudinal domain-specific cognitive decline and brain atrophy. Cognitive models were repeated in MCI. RESULTS: In CU females, baseline plasma p-tau217 predicted verbal memory and medial temporal lobe trajectories such that trajectories significantly declined once p-tau217 concentrations surpassed 0.053 pg/ml, a threshold that corresponded to early levels of cortical amyloid aggregation in secondary amyloid positron emission tomography analyses. CU males exhibited similar rates of cognitive decline and brain atrophy, but these trajectories were not dependent on plasma p-tau217. Plasma GFAP and NfL exhibited similar female-specific prediction of medial temporal lobe atrophy in CU. Plasma p-tau217 exhibited comparable prediction of cognitive decline across sex in MCI. DISCUSSION: Plasma p-tau217 may capture earlier Alzheimer's disease (AD)-related cognitive and brain atrophy hallmarks in females compared to males, possibly reflective of increased susceptibility to AD pathophysiology.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Adult , Humans , Female , Male , tau Proteins/metabolism , Alzheimer Disease/metabolism , Brain/metabolism , Positron-Emission Tomography , Atrophy/metabolism , Biomarkers , Amyloid beta-Peptides/metabolism
10.
Alzheimers Dement ; 20(3): 2089-2101, 2024 03.
Article in English | MEDLINE | ID: mdl-38224278

ABSTRACT

INTRODUCTION: With emergence of disease-modifying therapies, efficient diagnostic pathways are critically needed to identify treatment candidates, evaluate disease severity, and support prognosis. A combination of plasma biomarkers and brief digital cognitive assessments could provide a scalable alternative to current diagnostic work-up. METHODS: We examined the accuracy of plasma biomarkers and a 10-minute supervised tablet-based cognitive assessment (Tablet-based Cognitive Assessment Tool Brain Health Assessment [TabCAT-BHA]) in predicting amyloid ß positive (Aß+) status on positron emission tomography (PET), concurrent disease severity, and functional decline in 309 older adults with subjective cognitive impairment (n = 49), mild cognitive impairment (n = 159), and dementia (n = 101). RESULTS: Combination of plasma pTau181, Aß42/40, neurofilament light (NfL), and TabCAT-BHA was optimal for predicting Aß-PET positivity (AUC = 0.962). Whereas NfL and TabCAT-BHA optimally predicted concurrent disease severity, combining these with pTau181 and glial fibrillary acidic protein was most accurate in predicting functional decline. DISCUSSION: Combinations of plasma and digital cognitive markers show promise for scalable diagnosis and prognosis of ADRD. HIGHLIGHTS: The need for cost-efficient diagnostic and prognostic markers of AD is urgent. Plasma and digital cognitive markers provide complementary diagnostic contributions. Combination of these markers holds promise for scalable diagnosis and prognosis. Future validation in community cohorts is needed to inform clinical implementation.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Aged , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Prognosis , Cognitive Dysfunction/metabolism , Biomarkers , Positron-Emission Tomography/methods , Cognition , tau Proteins
11.
Alzheimers Dement ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951718

ABSTRACT

INTRODUCTION: Vascular contributions to cognitive impairment and dementia (VCID) represent a major factor in cognitive decline in older adults. The present study examined the relationship between cerebrovascular reactivity (CVR) measured by magnetic resonance imaging (MRI) and cognitive function in a multi-site study, using a predefined hypothesis. METHODS: We conducted the study in a total of three analysis sites and 263 subjects. Each site performed an identical CVR MRI procedure using 5% carbon dioxide inhalation. A global cognitive measure of Montreal Cognitive Assessment (MoCA) and an executive function measure of item response theory (IRT) score were used as outcomes. RESULTS: CVR and MoCA were positively associated, and this relationship was reproduced at all analysis sites. CVR was found to be positively associated with executive function. DISCUSSION: The predefined hypothesis on the association between CVR and a global cognitive score was validated in three independent analysis sites, providing support for CVR as a biomarker in VCID. HIGHLIGHTS: This study measured a novel functional index of small arteries referred to as cerebrovascular reactivity (CVR). CVR was positively associated with global cognition in older adults. This finding was observed in three independent cohorts at three sites. Our statistical analysis plan was predefined before beginning data collection.

12.
Hum Brain Mapp ; 44(15): 5013-5029, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37471695

ABSTRACT

Behavioral variant frontotemporal dementia is characterized by heterogeneous frontal, insular, and anterior temporal atrophy patterns that vary along left-right and dorso-ventral axes. Little is known about how these structural imbalances impact clinical symptomatology. The goal of this study was to assess the frequency of frontotemporal asymmetry (right- or left-lateralization) and dorsality (ventral or dorsal predominance of atrophy) and to investigate their clinical correlates. Neuropsychiatric symptoms and structural images were analyzed for 250 patients with behavioral variant frontotemporal dementia. Frontotemporal atrophy was most often symmetric while left-lateralized (9%) and right-lateralized (17%) atrophy were present in a minority of patients. Atrophy was more often ventral (32%) than dorsal (3%) predominant. Patients with right-lateralized atrophy were characterized by higher severity of abnormal eating behavior and hallucinations compared to those with left-lateralized atrophy. Subsequent analyses clarified that eating behavior was associated with right atrophy to a greater extent than a lack of left atrophy, and hallucinations were driven mainly by right atrophy. Dorsality analyses showed that anxiety, euphoria, and disinhibition correlated with ventral-predominant atrophy. Agitation, irritability, and depression showed greater severity with a lack of regional atrophy, including in dorsal regions. Aberrant motor behavior and apathy were not explained by asymmetry or dorsality. This study provides additional insight into how anatomical heterogeneity influences the clinical presentation of patients with behavioral variant frontotemporal dementia. Behavioral symptoms can be associated not only with the presence or absence of focal atrophy, but also with right/left or dorsal/ventral imbalance of gray matter volume.


Subject(s)
Apathy , Frontotemporal Dementia , Humans , Frontotemporal Dementia/complications , Frontotemporal Dementia/diagnostic imaging , Magnetic Resonance Imaging/methods , Behavioral Symptoms , Hallucinations , Atrophy , Neuropsychological Tests
13.
Cogn Affect Behav Neurosci ; 23(5): 1401-1413, 2023 10.
Article in English | MEDLINE | ID: mdl-37442860

ABSTRACT

Individuals with high emotional granularity make fine-grained distinctions between their emotional experiences. To have greater emotional granularity, one must acquire rich conceptual knowledge of emotions and use this knowledge in a controlled and nuanced way. In the brain, the neural correlates of emotional granularity are not well understood. While the anterior temporal lobes, angular gyri, and connected systems represent conceptual knowledge of emotions, inhibitory networks with hubs in the inferior frontal cortex (i.e., posterior inferior frontal gyrus, lateral orbitofrontal cortex, and dorsal anterior insula) guide the selection of this knowledge during emotions. We investigated the structural neuroanatomical correlates of emotional granularity in 58 healthy, older adults (ages 62-84 years), who have had a lifetime to accrue and deploy their conceptual knowledge of emotions. Participants reported on their daily experience of 13 emotions for 8 weeks and underwent structural magnetic resonance imaging. We computed intraclass correlation coefficients across daily emotional experience surveys (45 surveys on average per participant) to quantify each participant's overall emotional granularity. Surface-based morphometry analyses revealed higher overall emotional granularity related to greater cortical thickness in inferior frontal cortex (pFWE < 0.05) in bilateral clusters in the lateral orbitofrontal cortex and extending into the left dorsal anterior insula. Overall emotional granularity was not associated with cortical thickness in the anterior temporal lobes or angular gyri. These findings suggest individual differences in emotional granularity relate to variability in the structural neuroanatomy of the inferior frontal cortex, an area that supports the controlled selection of conceptual knowledge during emotional experiences.


Subject(s)
Emotions , Frontal Lobe , Humans , Aged , Frontal Lobe/diagnostic imaging , Frontal Lobe/pathology , Brain/pathology , Prefrontal Cortex , Temporal Lobe/diagnostic imaging , Magnetic Resonance Imaging
14.
J Neurol Neurosurg Psychiatry ; 94(7): 541-549, 2023 07.
Article in English | MEDLINE | ID: mdl-36977552

ABSTRACT

BACKGROUND: Measuring systemic inflammatory markers may improve clinical prognosis and help identify targetable pathways for treatment in patients with autosomal dominant forms of frontotemporal lobar degeneration (FTLD). METHODS: We measured plasma concentrations of IL-6, TNFα and YKL-40 in pathogenic variant carriers (MAPT, C9orf72, GRN) and non-carrier family members enrolled in the ARTFL-LEFFTDS Longitudinal Frontotemporal Lobar Degeneration consortium. We evaluated associations between baseline plasma inflammation and rate of clinical and neuroimaging changes (linear mixed effects models with standardised (z) outcomes). We compared inflammation between asymptomatic carriers who remained clinically normal ('asymptomatic non-converters') and those who became symptomatic ('asymptomatic converters') using area under the curve analyses. Discrimination accuracy was compared with that of plasma neurofilament light chain (NfL). RESULTS: We studied 394 participants (non-carriers=143, C9orf72=117, GRN=62, MAPT=72). In MAPT, higher TNFα was associated with faster functional decline (B=0.12 (0.02, 0.22), p=0.02) and temporal lobe atrophy. In C9orf72, higher TNFα was associated with faster functional decline (B=0.09 (0.03, 0.16), p=0.006) and cognitive decline (B=-0.16 (-0.22, -0.10), p<0.001), while higher IL-6 was associated with faster functional decline (B=0.12 (0.03, 0.21), p=0.01). TNFα was higher in asymptomatic converters than non-converters (ß=0.29 (0.09, 0.48), p=0.004) and improved discriminability compared with plasma NfL alone (ΔR2=0.16, p=0.007; NfL: OR=1.4 (1.03, 1.9), p=0.03; TNFα: OR=7.7 (1.7, 31.7), p=0.007). CONCLUSIONS: Systemic proinflammatory protein measurement, particularly TNFα, may improve clinical prognosis in autosomal dominant FTLD pathogenic variant carriers who are not yet exhibiting severe impairment. Integrating TNFα with markers of neuronal dysfunction like NfL could optimise detection of impending symptom conversion in asymptomatic pathogenic variant carriers and may help personalise therapeutic approaches.


Subject(s)
Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Humans , C9orf72 Protein/genetics , Disease Progression , Frontotemporal Dementia/diagnosis , Frontotemporal Lobar Degeneration/diagnosis , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/pathology , Inflammation , Interleukin-6 , Mutation , tau Proteins/genetics , Tumor Necrosis Factor-alpha
15.
Anesthesiology ; 139(4): 432-443, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37364279

ABSTRACT

BACKGROUND: The pathophysiology of delirium is incompletely understood, including what molecular pathways are involved in brain vulnerability to delirium. This study examined whether preoperative plasma neurodegeneration markers were elevated in patients who subsequently developed postoperative delirium through a retrospective case-control study. METHODS: Inclusion criteria were patients of 65 yr of age or older, undergoing elective noncardiac surgery with a hospital stay of 2 days or more. Concentrations of preoperative plasma P-Tau181, neurofilament light chain, amyloid ß1-42 (Aß42), and glial fibrillary acidic protein were measured with a digital immunoassay platform. The primary outcome was postoperative delirium measured by the Confusion Assessment Method. The study included propensity score matching by age and sex with nearest neighbor, such that each patient in the delirium group was matched by age and sex with a patient in the no-delirium group. RESULTS: The initial cohort consists of 189 patients with no delirium and 102 patients who developed postoperative delirium. Of 291 patients aged 72.5 ± 5.8 yr, 50.5% were women, and 102 (35%) developed postoperative delirium. The final cohort in the analysis consisted of a no-delirium group (n = 102) and a delirium group (n = 102) matched by age and sex using the propensity score method. Of the four biomarkers assayed, the median value for neurofilament light chain was 32.05 pg/ml for the delirium group versus 23.7 pg/ml in the no-delirium group. The distribution of biomarker values significantly differed between the delirium and no-delirium groups (P = 0.02 by the Kolmogorov-Smirnov test) with the largest cumulative probability difference appearing at the biomarker value of 32.05 pg/ml. CONCLUSIONS: These results suggest that patients who subsequently developed delirium are more likely to be experiencing clinically silent neurodegenerative changes before surgery, reflected by changes in plasma neurofilament light chain biomarker concentrations, which may identify individuals with a preoperative vulnerability to subsequent cognitive decline.


Subject(s)
Emergence Delirium , Humans , Female , Male , Emergence Delirium/psychology , Retrospective Studies , Case-Control Studies , Postoperative Complications , Biomarkers
16.
Am J Geriatr Psychiatry ; 31(6): 401-410, 2023 06.
Article in English | MEDLINE | ID: mdl-36509633

ABSTRACT

OBJECTIVE: Chronic stress adversely affects cognition, in part due to stress-induced inflammation. Rodent models suggest females are more resilient against stress-related cognitive dysfunction than males; however, few studies have examined this in humans. We examined sex differences in the relationship between perceived stress, cognitive functioning, and peripheral inflammation over time among cognitively normal older adults. DESIGN: Longitudinal observational study. SETTING: University research center. PARTICIPANTS: 274 community-dwelling older adults (baseline age: M=70.7, SD=7.2; 58% women; Clinical Dementia Rating=0) who completed at least two study visits. MEASUREMENTS: Neurocognitive functioning and perceived stress (Perceived Stress Scale [PSS]) were assessed at each visit. Plasma was analyzed for interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) in a subset of 147 participants. Linear mixed effects models examined the interaction between average PSS (i.e., averaged within persons across visits), sex, and time on cognitive domains and on inflammatory markers. RESULTS: The interaction between stress, sex, and time predicted executive functioning (ß = 0.26, SE = 0.10, p = 0.01) such that higher average PSS related to steeper declines in men, but not in women. Among the 147 participants with inflammatory data, higher average PSS was associated with steeper increases in IL-6 over time in men, but not in women. CONCLUSION: Consistent with animal models, results showed older men were more vulnerable to negative effects of stress on cognitive aging, with domain-specific declines in executive function. Findings also suggest systemic immunological mechanisms may underlie increased risk for cognitive decline in men with higher levels of stress. Future work is needed to examine the potential efficacy of person-specific stress interventions.


Subject(s)
Aging , Cognitive Dysfunction , Humans , Male , Female , Aged , Aging/psychology , Sex Characteristics , Interleukin-6 , Cognitive Dysfunction/epidemiology , Cognitive Dysfunction/etiology , Cognition , Longitudinal Studies , Inflammation , Stress, Psychological/epidemiology
17.
Psychophysiology ; 60(4): e14218, 2023 04.
Article in English | MEDLINE | ID: mdl-36371680

ABSTRACT

The outflow of the autonomic nervous system (ANS) is continuous and dynamic, but its functional organization is not well understood. Whether ANS patterns accompany emotions, or arise in basal physiology, remain unsettled questions in the field. Here, we searched for brief ANS patterns amidst continuous, multichannel physiological recordings in 45 healthy older adults. Participants completed an emotional reactivity task in which they viewed video clips that elicited a target emotion (awe, sadness, amusement, disgust, or nurturant love); each video clip was preceded by a pre-trial baseline period and followed by a post-trial recovery period. Participants also sat quietly for a separate 2-min resting period to assess basal physiology. Using principal components analysis and unsupervised clustering algorithms to reduce the second-by-second physiological data during the emotional reactivity task, we uncovered five ANS states. Each ANS state was characterized by a unique constellation of patterned physiological changes that differentiated among the trials of the emotional reactivity task. These ANS states emerged and dissipated over time, with each instance lasting several seconds on average. ANS states with similar structures were also detectable in the resting period but were intermittent and of smaller magnitude. Our results offer new insights into the functional organization of the ANS. By assembling short-lived, patterned changes, the ANS is equipped to generate a wide range of physiological states that accompany emotions and that contribute to the architecture of basal physiology.


Subject(s)
Autonomic Nervous System , Disgust , Humans , Aged , Autonomic Nervous System/physiology , Emotions/physiology , Love , Sadness
18.
J Geriatr Psychiatry Neurol ; 36(5): 397-406, 2023 09.
Article in English | MEDLINE | ID: mdl-36710073

ABSTRACT

Many factors outside of cardiovascular health can impact the structure of white matter. Identification of reliable and clinically meaningful biomarkers of the neural effects of systemic and cardiovascular health are needed to refine etiologic predictions. We examined whether the corpus callosum demonstrates regional vulnerability to systemic cardiovascular risk factors. Three hundred and ninety-four older adults without dementia completed brain MRI, neurobehavioral evaluations, and blood draws. A subset (n = 126, n = 128) of individuals had blood plasma analyzed for inflammatory markers of interest (IL-6 and TNF-alpha). Considering diffusion tensor imaging (DTI) is a particularly reliable measure of white matter integrity, we utilized DTI to examine fractional anisotropy (FA) of anterior and posterior regions of the corpus callosum. Using multiple linear regression models, we simultaneously examined FA of the genu and the splenium to compare their associations with systemic and cardiovascular risk factors. Lower FA of the genu but not splenium was associated with greater systemic and cardiovascular risk, including higher systolic blood pressure (ß = -0.17, p = .020), hemoglobin A1C (ß = -0.21, p = .016) and IL-6 (ß = -0.34, p = .005). FA of the genu was uniquely associated with cognitive processing speed (ß = 0.20, p = .0015) and executive functioning (ß = 0.15, p = .012), but not memory performances (ß = 0.05, p = .357). Our results demonstrated differential vulnerability of the corpus callosum, such that frontal regions showed stronger, independent associations with biomarkers of systemic and cardiovascular health in comparison to posterior regions. Posterior white matter integrity may not reflect cardiovascular health. Clinically, these findings support the utility of examining the anterior corpus callosum as an indicator of cerebrovascular health.


Subject(s)
Cardiovascular Diseases , Corpus Callosum , Humans , Aged , Corpus Callosum/diagnostic imaging , Diffusion Tensor Imaging , Interleukin-6 , Risk Factors , Heart Disease Risk Factors , Brain
19.
Brain ; 145(12): 4489-4505, 2022 12 19.
Article in English | MEDLINE | ID: mdl-35762829

ABSTRACT

Early-onset (age < 65) Alzheimer's disease is associated with greater non-amnestic cognitive symptoms and neuropathological burden than late-onset disease. It is not fully understood whether these groups also differ in the associations between molecular pathology, neurodegeneration and cognitive performance. We studied amyloid-positive patients with early-onset (n = 60, mean age 58 ± 4, MMSE 21 ± 6, 58% female) and late-onset (n = 53, mean age 74 ± 6, MMSE 23 ± 5, 45% female) Alzheimer's disease who underwent neurological evaluation, neuropsychological testing, 11C-Pittsburgh compound B PET (amyloid-PET) and 18F-flortaucipir PET (tau-PET). 18F-fluorodeoxyglucose PET (brain glucose metabolism PET) was also available in 74% (n = 84) of participants. Composite scores for episodic memory, semantic memory, language, executive function and visuospatial domains were calculated based on cognitively unimpaired controls. Voxel-wise regressions evaluated correlations between PET biomarkers and cognitive scores and early-onset versus late-onset differences were tested with a PET × Age group interaction. Mediation analyses estimated direct and indirect (18F-fluorodeoxyglucose mediated) local associations between 18F-flortaucipir binding and cognitive scores in domain-specific regions of interest. We found that early-onset patients had higher 18F-flortaucipir binding in parietal, lateral temporal and lateral frontal cortex; more severe 18F-fluorodeoxyglucose hypometabolism in the precuneus and angular gyrus; and greater 11C-Pittsburgh compound B binding in occipital regions compared to late-onset patients. In our primary analyses, PET-cognition correlations did not meaningfully differ between age groups.18F-flortaucipir and 18F-fluorodeoxyglucose, but not 11C-Pittsburgh compound B, were significantly associated with cognition in expected domain-specific patterns in both age groups (e.g. left perisylvian/language, frontal/executive, occipital/visuospatial). 18F-fluorodeoxyglucose mediated the relationship between 18F-flortaucipir and cognition in both age groups across all domains except episodic memory in late-onset patients. Additional direct effects of 18F-flortaucipir were observed for executive function in all age groups, language in early-onset Alzheimer's disease and in the total sample and visuospatial function in the total sample. In conclusion, tau and neurodegeneration, but not amyloid, were similarly associated with cognition in both early and late-onset Alzheimer's disease. Tau had an association with cognition independent of neurodegeneration in language, executive and visuospatial functions in the total sample. Our findings support tau PET as a biomarker that captures both the clinical severity and molecular pathology specific to Alzheimer's disease across the broad spectrum of ages and clinical phenotypes in Alzheimer's disease.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Female , Male , Humans , Alzheimer Disease/pathology , Fluorodeoxyglucose F18/metabolism , tau Proteins/metabolism , Cognition , Brain/pathology , Amyloid/metabolism , Amyloidogenic Proteins/metabolism , Positron-Emission Tomography , Biomarkers/metabolism , Cognitive Dysfunction/pathology
20.
Brain ; 145(2): 744-753, 2022 04 18.
Article in English | MEDLINE | ID: mdl-34919638

ABSTRACT

Since the first demonstrations of network hyperexcitability in scientific models of Alzheimer's disease, a growing body of clinical studies have identified subclinical epileptiform activity and associated cognitive decline in patients with Alzheimer's disease. An obvious problem presented in these studies is lack of sensitive measures to detect and quantify network hyperexcitability in human subjects. In this study we examined whether altered neuronal synchrony can be a surrogate marker to quantify network hyperexcitability in patients with Alzheimer's disease. Using magnetoencephalography (MEG) at rest, we studied 30 Alzheimer's disease patients without subclinical epileptiform activity, 20 Alzheimer's disease patients with subclinical epileptiform activity and 35 age-matched controls. Presence of subclinical epileptiform activity was assessed in patients with Alzheimer's disease by long-term video-EEG and a 1-h resting MEG with simultaneous EEG. Using the resting-state source-space reconstructed MEG signal, in patients and controls we computed the global imaginary coherence in alpha (8-12 Hz) and delta-theta (2-8 Hz) oscillatory frequencies. We found that Alzheimer's disease patients with subclinical epileptiform activity have greater reductions in alpha imaginary coherence and greater enhancements in delta-theta imaginary coherence than Alzheimer's disease patients without subclinical epileptiform activity, and that these changes can distinguish between Alzheimer's disease patients with subclinical epileptiform activity and Alzheimer's disease patients without subclinical epileptiform activity with high accuracy. Finally, a principal component regression analysis showed that the variance of frequency-specific neuronal synchrony predicts longitudinal changes in Mini-Mental State Examination in patients and controls. Our results demonstrate that quantitative neurophysiological measures are sensitive biomarkers of network hyperexcitability and can be used to improve diagnosis and to select appropriate patients for the right therapy in the next-generation clinical trials. The current results provide an integrative framework for investigating network hyperexcitability and network dysfunction together with cognitive and clinical correlates in patients with Alzheimer's disease.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Brain , Cognitive Dysfunction/complications , Cognitive Dysfunction/etiology , Electroencephalography/methods , Humans , Magnetoencephalography
SELECTION OF CITATIONS
SEARCH DETAIL