Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Mass Spectrom Rev ; 43(3): 560-609, 2024.
Article in English | MEDLINE | ID: mdl-37503656

ABSTRACT

The role of mass spectrometry (MS) has become more important in most application domains in recent years. Pharmaceutical analysis is specific due to its stringent regulation procedures, the need for good laboratory/manufacturing practices, and a large number of routine quality control analyses to be carried out. The role of MS is, therefore, very different throughout the whole drug development cycle. While it dominates within the drug discovery and development phase, in routine quality control, the role of MS is minor and indispensable only for selected applications. Moreover, its role is very different in the case of analysis of small molecule pharmaceuticals and biopharmaceuticals. Our review explains the role of current MS in the analysis of both small-molecule chemical drugs and biopharmaceuticals. Important features of MS-based technologies being implemented, method requirements, and related challenges are discussed. The differences in analytical procedures for small molecule pharmaceuticals and biopharmaceuticals are pointed out. While a single method or a small set of methods is usually sufficient for quality control in the case of small molecule pharmaceuticals and MS is often not indispensable, a large panel of methods including extensive use of MS must be used for quality control of biopharmaceuticals. Finally, expected development and future trends are outlined.


Subject(s)
Biological Products , Drug Discovery , Drug Development , Biological Products/chemistry , Mass Spectrometry/methods , Pharmaceutical Preparations
2.
Biol Reprod ; 110(4): 722-738, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38145492

ABSTRACT

Maternal immune activation during pregnancy is a risk factor for offspring neuropsychiatric disorders. Among the mechanistic pathways by which maternal inflammation can affect fetal brain development and programming, those involving tryptophan (TRP) metabolism have drawn attention because various TRP metabolites have neuroactive properties. This study evaluates the effect of bacterial (lipopolysaccharides/LPS) and viral (polyinosinic:polycytidylic acid/poly I:C) placental infection on TRP metabolism using an ex vivo model. Human placenta explants were exposed to LPS or poly I:C, and the release of TRP metabolites was analyzed together with the expression of related genes and proteins and the functional activity of key enzymes in TRP metabolism. The rate-limiting enzyme in the serotonin pathway, tryptophan hydroxylase, showed reduced expression and functional activity in explants exposed to LPS or poly I:C. Conversely, the rate-limiting enzyme in the kynurenine pathway, indoleamine dioxygenase, exhibited increased activity, gene, and protein expression, suggesting that placental infection mainly promotes TRP metabolism via the kynurenine (KYN) pathway. Furthermore, we observed that treatment with LPS or poly I:C increased activity in the kynurenine monooxygenase branch of the KYN pathway. We conclude that placental infection impairs TRP homeostasis, resulting in decreased production of serotonin and an imbalance in the ratio between quinolinic acid and kynurenic acid. This disrupted homeostasis may eventually expose the fetus to suboptimal/toxic levels of neuroactive molecules and impair fetal brain development.


Subject(s)
Kynurenine , Placenta , Humans , Pregnancy , Female , Placenta/metabolism , Kynurenine/metabolism , Tryptophan/metabolism , Lipopolysaccharides/toxicity , Serotonin/metabolism , Poly I/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
3.
Inorg Chem ; 2024 Oct 11.
Article in English | MEDLINE | ID: mdl-39393080

ABSTRACT

Organic amines are found to be abundant in natural living systems. They also constitute an inestimable family of building blocks available in drug design. Considering the man-made cluster [(1,2-C2B9H11)2-3,3'-Co(III)]- ion (1-) and its application as an emerging unconventional pharmacophore, the availability of the corresponding amines has been limited and those with amino groups attached directly to carbon atoms have remained unknown. This paper describes the synthesis of compounds containing one or two primary amino groups attached to the carbon atoms of the cobaltacarborane cage that are accessible via the reduction of newly synthesized azides or via the Curtius rearrangement of the corresponding acyl azide. This substitution represents the first members of the series of azides and primary amines with functional groups bound directly to the carbon atoms of the cage. As expected, the absence of the linker along with the presence of the bulky anionic polyhedral ion leads to a significant alteration of the chemical and physicochemical properties. On a broader series of amines of the ion 1- we have thus observed significant differences in the acidity of the amino groups, depending on whether these are attached to the carbon or boron atoms of the cage, or the C-substituted amines contain an aliphatic linker of variable length. The compounds are relevant for potential use as cobalt bis(dicarbollide) structural blocks in medicinal chemistry and material science. Our study includes single-crystal X-ray diffraction (XRD) structures of both amines and a discussion of their stereochemical and structural features.

4.
Nucleic Acids Res ; 50(18): 10212-10229, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36156152

ABSTRACT

The short oligodeoxynucleotide (ODN) probes are suitable for good discrimination of point mutations. However, the probes suffer from low melting temperatures. In this work, the strategy of using acridine-4-carboxamide intercalators to improve thermal stabilisation is investigated. The study of large series of acridines revealed that optimal stabilisation is achieved upon decoration of acridine by secondary carboxamide carrying sterically not demanding basic function bound through a two-carbon linker. Two highly active intercalators were attached to short probes (13 or 18 bases; designed as a part of HFE gene) by click chemistry into positions 7 and/or 13 and proved to increase the melting temperate (Tm) of the duplex by almost 8°C for the best combination. The acridines interact with both single- and double-stranded DNAs with substantially preferred interaction for the latter. The study of interaction suggested higher affinity of the acridines toward the GC- than AT-rich sequences. Good discrimination of two point mutations was shown in practical application with HFE gene (wild type, H63D C > G and S65C A > C mutations). Acridine itself can also serve as a fluorophore and also allows discrimination of the fully matched sequences from those with point mutations in probes labelled only with acridine.


Subject(s)
Acridines , Intercalating Agents , Carbon , DNA/genetics , DNA/metabolism , Oligodeoxyribonucleotides
5.
Chirality ; 35(12): 937-951, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37461229

ABSTRACT

Derivatives of the nido-7,8-C2 B9 H12 (1-) (dicarbollide ion) and [3,3'-Co-(1,2-C2 B9 H11 )2 ](1-) cobalt sandwich (COSAN) ion represent groups of extremely chemically and thermally stable abiotic compounds. They are being investigated in many research areas, that is, medicinal chemistry, material sciences, analytical chemistry, and electrochemistry. The chirality of these compounds remains still grossly overlooked, what is also reflected in limited number of reports on their chiral separations. Continued progress depends on reliable, fast, and cost-effective methods for such separations. Recently, chiral separations of COSAN derivatives were achieved in liquid chromatography and supercritical fluid chromatography. Only five anionic derivatives of nido-7,8-C2 B9 H12 (1-) were successfully enantioseparated in liquid chromatography. Efforts to separate anionic nido-7,8-C2 B9 H12 (1-) in supercritical chromatography have failed, and only a few dicarbollide ions were separated using liquid chromatography. Generally, all chiral separations in liquid chromatography took about 30 min. Herein, we identify a versatile column capable of separating both COSAN and nido-7,8-C2 B9 H12 (1-) derivatives and achieve faster analyses times employing commercially available superficially porous chiral stationary phases. The semisynthetic hydroxypropyl ß-cyclodextrin-based column (CDShell-RSP) is identified as the column of choice from the tested columns by separating 19 of 27 compounds from each structural motifs tested mainly in less than 10 min. The dihydroxyalkyl, oxygen-bridged hydroxyalkyl, and bisphenylene-bridged COSAN derivatives were baseline separated in less than 5 min exceeding the results of supercritical fluid chromatography. Methods developed herein will aid synthetic chemists without the possession of a supercritical fluid chromatograph to achieve fast chiral separations of COSAN and derivatives of nido-7,8-C2 B9 H12 (1-) on a common liquid chromatograph without the need of dedicated instrumentation.

6.
J Sep Sci ; 46(18): e2300431, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37568246

ABSTRACT

Within this review, we thoroughly explored supercritical fluid chromatography (SFC) columns used across > 3000 papers published from the first study carried out under SFC conditions in 1962 to the end of 2022. We focused on the open tubular capillary, packed capillary, and packed columns, their chemistries, dimensions, and trends in used stationary phases with correlation to their specific interactions, advantages, drawbacks, used instrumentation, and application field. Since the 1990s, packed columns with liquid chromatography and SFC-dedicated stationary phases for chiral and achiral separation are predominantly used. These stationary phases are based on silica support modified with a wide range of chemical moieties. Moreover, numerous unconventional stationary phases were evaluated, including porous graphitic carbon, titania, zirconia, alumina, liquid crystals, and ionic liquids. The applications of unconventional stationary phases are described in detail as they bring essential findings required for further development of the supercritical fluid chromatography technique.

7.
Anal Chem ; 94(50): 17551-17558, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36475613

ABSTRACT

The continuous expansion of research in the field of stable carboranes and their wide potential in the drug design require carrying out fundamental studies regarding their chiral separations. Although supercritical fluid chromatography (SFC) is a viable technique for fast enantioseparations, no investigation concerning boron cluster compounds has been done yet. We aimed at the development of a straightforward method enabling chiral separations of racemic mixtures of anionic cluster carboranes and metallacarboranes that represent an analytical challenge. The fast gradient screening testing nine polysaccharide-based columns was used. The key parameters affecting the selectivity were the type of chiral selector, the type of alcohol, and the base in cosolvent. Moreover, the addition of acetonitrile or water to the cosolvent was identified as an effective tool for decreasing the analysis time while preserving the resolution. After the optimization, the chiral separations of 19 out of 20 selected compounds were achieved in less than 10 min. These results demonstrate the clear advantage of SFC over chiral separations using HPLC in terms of both analysis time and structural variety of successfully separated compounds.


Subject(s)
Chromatography, Supercritical Fluid , Chromatography, Supercritical Fluid/methods , Stereoisomerism , Chromatography, High Pressure Liquid/methods , Polysaccharides/chemistry , Ethanol
8.
Bioconjug Chem ; 33(5): 788-794, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35476400

ABSTRACT

Although triple labeling of molecular beacons has been documented to improve quenching efficiencies and studies generally assume similar benefits at long TaqMan probes, a limited number of works have studied this issue in TaqMan probes. We therefore prepared a series of long triple-labeled oligodeoxynucleotide probes with 6-carboxyfluorescein as a fluorophore at the 5'-end and BlackBerry (BBQ-650) or azaphthalocyanine quenchers at the 3'-end and in the intrastrand position and systematically compared their quenching efficiencies with those of the corresponding double-labeled probes including important control probes. A model polymerase chain reaction (PCR) assay enabled the determination of the quenching efficiencies of static and Förster resonance energy transfer (FRET) quenching in the target probes. The type of probe had no effect on the static quenching ability. Importantly, FRET quenching of double-labeled probes with a quencher at the 3'-end showed a statistically insignificant difference from the control probe without any quencher, indicating the need to shift the quencher closer to the fluorophore in long probes. Shortening the distance between the fluorophore and the quencher played a key role in FRET quenching, whereas the introduction of an additional quencher only slightly improved the quenching efficiency. BBQ-labeled probes had lower quenching efficiencies than azaphthalocyanine probes. The methodologies and relationships described above seem, however, to be universal and applicable to any quencher.


Subject(s)
Fluorescent Dyes , Oligodeoxyribonucleotides , Fluorescence Resonance Energy Transfer/methods , Polymerase Chain Reaction/methods
9.
Biomed Chromatogr ; 35(4): e5033, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33226652

ABSTRACT

The influence of experimental conditions on chromatographic behaviour of promising oligodeoxynucleotide double-labelled molecular probes containing an azaphthalocyanine macrocycle as a perspective dark quencher was studied. A recently introduced new stationary phase based on styrene-divinylbenzene copolymer was tested. The planar and hydrophobic structure of the azaphthalocyanine is considerably different from those of currently used fluorophores and quenchers. Thus, the most challenging issue was the separation of the double-labelled probe from its main impurity represented by a mono-labelled probe, containing only the azaphthalocyanine macrocycle. The absorbance measurement cannot simply determine this impurity, and its presence fundamentally compromises the biological assay. The commonly used gradient elution was not suitable and isocratic conditions seemed to be more appropriate. The azaphthalocyanine moiety influences the properties of the modified oligodeoxynucleotides substantially, and thus their chromatographic behaviour was determined predominantly by this quencher. Acetonitrile was the preferred organic solvent for the analysis of probes containing the azaphthalocyanine quencher and the effect of ion-pairing reagents was dependent on the probe structure. The temperature seemed to be an effective parameter for fine-tuning of the separation and mass transfer improvement. Generally, our findings could be helpful in method development for purity evaluation of double-labelled oligodeoxynucleotide probes and semipreparative methods.


Subject(s)
Aza Compounds , Chromatography, High Pressure Liquid/methods , Fluorescent Dyes , Molecular Probes , Oligodeoxyribonucleotides , Acetonitriles/chemistry , Aza Compounds/analysis , Aza Compounds/chemistry , Fluorescent Dyes/analysis , Fluorescent Dyes/chemistry , Hydrophobic and Hydrophilic Interactions , Molecular Probes/analysis , Molecular Probes/chemistry , Oligodeoxyribonucleotides/analysis , Oligodeoxyribonucleotides/chemistry , Solvents
10.
Int J Mol Sci ; 21(20)2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33066440

ABSTRACT

Placental homeostasis of tryptophan is essential for fetal development and programming. The two main metabolic pathways (serotonin and kynurenine) produce bioactive metabolites with immunosuppressive, neurotoxic, or neuroprotective properties and their concentrations in the fetoplacental unit must be tightly regulated throughout gestation. Here, we investigated the expression/function of key enzymes/transporters involved in tryptophan pathways during mid-to-late gestation in rat placenta and fetal organs. Quantitative PCR and heatmap analysis revealed the differential expression of several genes involved in serotonin and kynurenine pathways. To identify the flux of substrates through these pathways, Droplet Digital PCR, western blot, and functional analyses were carried out for the rate-limiting enzymes and transporters. Our findings show that placental tryptophan metabolism to serotonin is crucial in mid-gestation, with a subsequent switch to fetal serotonin synthesis. Concurrently, at term, the close interplay between transporters and metabolizing enzymes of both placenta and fetal organs orchestrates serotonin homeostasis and prevents hyper/hypo-serotonemia. On the other hand, the placental production of kynurenine increases during pregnancy, with a low contribution of fetal organs throughout gestation. Any external insult to this tightly regulated harmony of transporters and enzymes within the fetoplacental unit may affect optimal in utero conditions and have a negative impact on fetal programming.


Subject(s)
Fetus/metabolism , Placenta/metabolism , Transcriptome , Tryptophan/metabolism , Animals , Female , Fetus/embryology , Gene Expression Regulation, Developmental , Metabolic Networks and Pathways , Placenta/embryology , Pregnancy , Rats , Rats, Wistar , Tryptophan/genetics
11.
Molecules ; 25(7)2020 Mar 27.
Article in English | MEDLINE | ID: mdl-32230728

ABSTRACT

Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis (Mtb), each year causing millions of deaths. In this article, we present the synthesis and biological evaluations of new potential antimycobacterial compounds containing a fragment of the first-line antitubercular drug pyrazinamide (PZA), coupled with methyl or ethyl esters of selected amino acids. The antimicrobial activity was evaluated on a variety of (myco)bacterial strains, including Mtb H37Ra, M. smegmatis, M. aurum, Staphylococcus aureus, Pseudomonas aeruginosa, and fungal strains, including Candida albicans and Aspergillus flavus. Emphasis was placed on the comparison of enantiomer activities. None of the synthesized compounds showed any significant activity against fungal strains, and their antibacterial activities were also low, the best minimum inhibitory concentration (MIC) value was 31.25 µM. However, several compounds presented high activity against Mtb. Overall, higher activity was seen in derivatives containing ʟ-amino acids. Similarly, the activity seems tied to the more lipophilic compounds. The most active derivative contained phenylglycine moiety (PC-ᴅ/ʟ-Pgl-Me, MIC < 1.95 µg/mL). All active compounds possessed low cytotoxicity and good selectivity towards Mtb. To the best of our knowledge, this is the first study comparing the activities of the ᴅ- and ʟ-amino acid derivatives of pyrazinamide as potential antimycobacterial compounds.


Subject(s)
Amino Acids/pharmacology , Anti-Bacterial Agents/pharmacology , Antitubercular Agents/pharmacology , Mycobacterium tuberculosis/drug effects , Pyrazinamide/pharmacology , Tuberculosis/drug therapy , Amino Acids/chemistry , Aspergillus flavus/drug effects , Candida albicans/drug effects , Cell Survival/drug effects , Chromatography, Liquid , Gas Chromatography-Mass Spectrometry , Hep G2 Cells , Humans , Hydrogen-Ion Concentration , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Mycobacterium smegmatis/drug effects , Optical Rotation , Pseudomonas aeruginosa/drug effects , Pyrazinamide/chemistry , Staphylococcus aureus/drug effects
12.
Chemistry ; 24(38): 9658-9666, 2018 Jul 05.
Article in English | MEDLINE | ID: mdl-29683215

ABSTRACT

Unsymmetrical dialkylamino-substituted zinc azaphthalocyanine (AzaPc) exhibits unique spectral and photophysical properties for dark quenchers of fluorescence in DNA hybridization probes. The panchromatic light absorption of AzaPc from 300 nm up to at least 700 nm and its lack of fluorescence make it an ideal candidate for a universal dark quencher. To prove this experimentally, oligodeoxyribonucleotide probes were labeled at the 3'-end by this AzaPc and at the 5'-end by a fluorophore used in the polymerase chain reaction (PCR)-that is, fluorescein, CAL Fluor Red 610, and Cy5. AzaPc showed a significantly higher quenching efficiency compared to the commercially available dark quenchers (BHQ-1, BHQ-2, BBQ-650) in a developed model of TaqMan PCR assay. The AzaPc-labeled probe proved to also be useful in a practical PCR assay for the quantification of the SLCO2B1 transporter gene expression. The constructed calibration curves indicated linearity in the range from 102 to 107 of target copies.


Subject(s)
Fluorescein/chemistry , Fluorescent Dyes/chemical synthesis , Oligodeoxyribonucleotides/chemistry , Oligonucleotide Probes/chemistry , DNA Probes , Real-Time Polymerase Chain Reaction
13.
Xenobiotica ; 46(5): 416-23, 2016.
Article in English | MEDLINE | ID: mdl-26364927

ABSTRACT

1. Purine cyclin-dependent kinase inhibitors have recently been recognised as promising candidates for the treatment of various cancers. While pharmacodynamic properties of these compounds are relatively well understood, their pharmacokinetics including possible interactions with placental transport systems have not been characterised to date. 2. In this study, we investigated transplacental passage of olomoucine II and purvalanol A in rat focusing on possible role of p-glycoprotein (ABCB1), breast cancer resistance protein (ABCG2) and/or multidrug resistance-associated proteins (ABCCs). Employing the in situ method of dually perfused rat term placenta, we demonstrate transplacental passage of both olomoucine II and purvalanol A against the concentration gradient in foetus-to-mother direction. Using several ATP-binding cassette (ABC) drug transporter inhibitors, we confirm the participation of ABCB1, ABCG2 and ABCCs transporters in the placental passage of olomoucine II, but not purvalanol A. 3. Transplacental passage of olomoucine II and purvalanol A from mother to foetus is significantly reduced by active transporters, restricting thereby foetal exposure and providing protection against harmful effects of these xenobiotics. Importantly, we demonstrate that in spite of their considerable structural similarity, the two molecules utilise distinct placental transport systems. These facts should be kept in mind when introducing these prospective anticancer candidates and/or their analogues into the clinical area.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP-Binding Cassette Transporters/metabolism , Placenta/metabolism , Purines/pharmacokinetics , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Adenosine Triphosphate/chemistry , Animals , Biological Transport, Active , Chromatography, High Pressure Liquid , Female , Maternal Exposure , Multidrug Resistance-Associated Proteins/metabolism , Placenta/drug effects , Pregnancy , Pregnancy, Animal , Purines/administration & dosage , Rats , Rats, Wistar , Roscovitine , Trophoblasts/drug effects , Xenobiotics/chemistry
14.
Org Biomol Chem ; 13(20): 5608-12, 2015 May 28.
Article in English | MEDLINE | ID: mdl-25881971

ABSTRACT

A synthesis procedure for heteroatom-substituted tetra(3,4-pyrido)porphyrazines that absorb light near 800 nm was developed. Based on the observed relationships between the structure and photophysical parameters, a novel highly photodynamically active (IC50 = 0.26 µM) compound was synthesized and biologically characterized.


Subject(s)
Light , Macrocyclic Compounds/chemistry , Photochemistry , Porphyrins/chemistry , Molecular Structure , Spectroscopy, Near-Infrared , Structure-Activity Relationship
15.
Bioorg Med Chem Lett ; 24(2): 450-3, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24388809

ABSTRACT

A series of pyrazinamide derivatives with alkylamino substitution was designed, synthesized and tested for their ability to inhibit the growth of selected mycobacterial, bacterial and fungal strains. The target structures were prepared from the corresponding 5-chloro (1) or 6-chloropyrazine-2-carboxamide (2) by nucleophilic substitution of chlorine by various non-aromatic amines (alkylamines). To determine the influence of alkyl substitution, corresponding amino derivatives (1a, 2a) and compounds with phenylalkylamino substitution were prepared. Some of the compounds exerted antimycobacterial activity against Mycobacterium tuberculosis H37Rv significantly better than standard pyrazinamide and corresponding starting compounds (1 and 2). Basic structure-activity relationships are presented. Only weak antibacterial and no antifungal activity was detected.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Pyrazinamide/chemical synthesis , Pyrazinamide/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/pharmacology , Antitubercular Agents/chemical synthesis , Antitubercular Agents/pharmacology , Crystallography , Drug Evaluation, Preclinical/methods , Hep G2 Cells , Humans , Microbial Sensitivity Tests/methods , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/physiology
16.
J Sep Sci ; 37(9-10): 1089-93, 2014 May.
Article in English | MEDLINE | ID: mdl-24591308

ABSTRACT

Creatine, phosphocreatine, and adenine nucleotides are highly polar markers of myocardial metabolism that are poorly retained on RP silica sorbents. Zirconia represents an alternative material to silica with high promise to be used in hydrophilic interaction chromatography (HILIC). This study describes a first systematic investigation of the ability of ZrO2 to separate creatine, phosphocreatine, adenosine 5'-monophosphate, adenosine 5'-diphosphate, and adenosine 5'-triphosphate and compares the results with those obtained on TiO2 . All analytes showed a HILIC-like retention pattern when mobile phases of different strengths were tested. Stronger retention and better column performance were achieved in organic-rich mobile phases as compared to aqueous conditions, where poor retention and insufficient column performance were observed. The effect of mobile phase pH and ionic strength was evaluated as well. The analysis of myocardial tissue demonstrated that all compounds were separated in a relevant biological material and thus proved ZrO2 as a promising phase for HILIC of biological samples that deserves further investigation.


Subject(s)
Adenosine Diphosphate/isolation & purification , Adenosine Monophosphate/isolation & purification , Adenosine Triphosphate/isolation & purification , Creatine/isolation & purification , Myocardium/chemistry , Zirconium/chemistry , Adenosine Diphosphate/chemistry , Adenosine Diphosphate/metabolism , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/metabolism , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Biomarkers/chemistry , Biomarkers/metabolism , Chromatography, Liquid , Creatine/chemistry , Creatine/metabolism , Hydrophobic and Hydrophilic Interactions , Myocardium/metabolism , Phosphocreatine
17.
Biochem Pharmacol ; 229: 116500, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39179119

ABSTRACT

Rifampicin is a model ligand of the pregnane X receptor (PXR), the nuclear receptor involved in the regulation of cytochrome P450 3A4 (CYP3A4). Rifampicin forms several degradation products and metabolites of which 25-desacetylrifampicin is the most abundant in vivo. Here, we aimed to study both the stability and metabolism of rifampicin in media and 2D and 3D primary human hepatocytes (PHHs). Additionally, we analyzed interactions of rifampicin derivatives with PXR. We described that rifampicin gradually degrades by more than 50 % in the medium partly into quinone over 72 h. We observed 25-desacetylrifampicin in 2D PHHs but not in 3D PHHs. Contrary, rifampicin was converted into quinone in a one-direction process in media of 3D PHHs. The potency of rifampicin and its derivatives to activate human PXR was arranged as follows: 3-formylrifamycin SV > rifampicin quinone > rifampicin > rifampicin N-oxide > 25-desacetylrifampicin, respectively, but none activates mouse and rat PXR. The binding differences between rifampicin and 25-desacetylrifampicin were modeled in silico. Finally, we showed that overexpressed uptake organic anion transporting polypeptide 1B1 (OATP1B1) potentiated activation of PXR by rifampicin and rifampicin quinone, but overexpressed efflux multidrug resistance protein 1 (MDR1) decreased PXR activation by all derivatives.

18.
Toxicology ; 505: 153813, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663822

ABSTRACT

The increasing use of cannabis during pregnancy raises concerns about its impact on fetal development. While cannabidiol (CBD) shows therapeutic promise, its effects during pregnancy remain uncertain. We investigated CBD's influence on tryptophan (TRP) metabolism in the human placenta. TRP is an essential amino acid that is metabolized via the serotonin and kynurenine (KYN) pathways, which are critical for fetal neurodevelopment. We used human term villous placental explants, an advanced ex vivo model, to study CBD's impact on key TRP metabolic enzymes. In addition, vesicles isolated from the microvillous membrane (MVM) of the human placenta were used to assess CBD's effect on placental serotonin uptake. Explants were exposed to CBD at therapeutic (0.1, 1, 2.5 µg/ml) and non-therapeutic (20 and 40 µg/ml) concentrations to determine its effects on the gene and protein expression of key enzymes in TRP metabolism and metabolite release. CBD upregulated TRP hydroxylase (TPH) and downregulated monoamine oxidase (MAO-A), resulting in reduced levels of 5-hydroxyindoleacetic acid (HIAA). It also downregulated serotonin transporter expression and inhibited serotonin transport across the MVM by up to 60% while simultaneously enhancing TRP metabolism via the kynurenine pathway by upregulating indoleamine-pyrrole 2,3-dioxygenase (IDO-1). Among kynurenine pathway enzymes, kynurenine 3 monooxygenase (KMO) was upregulated while kynurenine aminotransferase 1 (KAT-1) was downregulated; the former is associated with neurotoxic metabolite production, while the latter is linked to reduced neuroprotective metabolite levels. Overall, these results indicate that CBD modulates TRP catabolism in the human placenta, potentially disrupting the tightly regulated homeostasis of the serotonin and KYN pathways.


Subject(s)
Cannabidiol , Placenta , Serotonin , Tryptophan , Humans , Female , Pregnancy , Tryptophan/metabolism , Placenta/metabolism , Placenta/drug effects , Cannabidiol/pharmacology , Serotonin/metabolism , Kynurenine/metabolism
19.
Anal Bioanal Chem ; 405(5): 1651-61, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23180090

ABSTRACT

Di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) is a promising analogue of the dipyridyl thiosemicarbazone class currently under development as a potential anti-cancer drug. In fact, this class of agents shows markedly greater anti-tumor activity and selectivity than the clinically investigated thiosemicarbazone, Triapine®. However, further development of DpC requires detailed data concerning its metabolism. Therefore, we focused on the identification of principal phase I and II metabolites of DpC in vitro. DpC was incubated with human liver microsomes/S9 fractions and the samples were analyzed using ultra-performance liquid chromatography (UPLC(TM)) with electrospray ionization quadrupole-time-of-flight (Q-TOF) mass spectrometry. An Acquity UPLC BEH C(18) column was implemented with 2 mM ammonium acetate and acetonitrile in gradient mode as the mobile phase. The chemical structures of metabolites were proposed based on the accurate mass measurement of the protonated molecules as well as their main product ions. Ten phase I and two phase II metabolites were detected and structurally described. The metabolism of DpC occurred via oxidation of the thiocarbonyl group, hydroxylation and N-demethylation, as well as the combination of these reactions. Conjugates of DpC and the metabolite, M10, with glucuronic acid were also observed as phase II metabolites. Neither sulfate nor glutathione conjugates were detected. This study provides the first information about the chemical structure of the principal metabolites of DpC, which supports the development of this promising anti-cancer drug and provides vital data for further pharmacokinetic and in vivo metabolism studies.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Microsomes, Liver/metabolism , Tandem Mass Spectrometry/methods , Thiosemicarbazones/chemistry , Thiosemicarbazones/metabolism , Chromatography, High Pressure Liquid/methods , Humans
20.
Molecules ; 18(12): 14807-25, 2013 Dec 02.
Article in English | MEDLINE | ID: mdl-24317522

ABSTRACT

5-Chloropyrazinamide (5-Cl-PZA) is an inhibitor of mycobacterial fatty acid synthase I with a broad spectrum of antimycobacterial activity in vitro. Some N-phenylpyrazine-2-carboxamides with different substituents on both the pyrazine and phenyl core possess significant in vitro activity against Mycobacterium tuberculosis. To test the activity of structures combining both the 5-Cl-PZA and anilide motifs a series of thirty 5-chloro-N-phenylpyrazine-2-carboxamides with various substituents R on the phenyl ring were synthesized and screened against M. tuberculosis H37Rv, M. kansasii and two strains of M. avium. Most of the compounds exerted activity against M. tuberculosis H37Rv in the range of MIC = 1.56-6.25 µg/mL and only three derivatives were inactive. The phenyl part of the molecule tolerated many different substituents while maintaining the activity. In vitro cytotoxicity was decreased in compounds with hydroxyl substituents, preferably combined with other hydrophilic substituents. 5-Chloro-N-(5-chloro-2-hydroxyphenyl)pyrazine-2-carboxamide (21) inhibited all of the tested strains (MIC = 1.56 µg/mL for M. tuberculosis; 12.5 µg/mL for other strains). 4-(5-Chloropyrazine-2-carboxamido)-2-hydroxybenzoic acid (30) preserved good activity (MIC = 3.13 µg/mL M. tuberculosis) and was rated as non-toxic in two in vitro models (Chinese hamster ovary and renal cell adenocarcinoma cell lines; SI = 47 and 35, respectively).


Subject(s)
Antitubercular Agents/chemical synthesis , Antitubercular Agents/pharmacology , Mycobacterium/drug effects , Pyrazinamide/analogs & derivatives , Animals , Antifungal Agents/chemical synthesis , Antifungal Agents/pharmacology , Antitubercular Agents/chemistry , Antitubercular Agents/toxicity , CHO Cells , Cell Line , Cell Line, Tumor , Cricetinae , Cricetulus , Humans , Hydrophobic and Hydrophilic Interactions , Inhibitory Concentration 50 , Microbial Sensitivity Tests , Pyrazinamide/chemical synthesis , Pyrazinamide/chemistry , Pyrazinamide/pharmacology , Pyrazinamide/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL